
Triton Consulting RCAC Hints & Tips

 RCAC
Hints & Tips

By Mark Gillis

Triton Consulting RCAC Hints & Tips

RCAC: Usage Considerations

Part 1

Row and Column Access Control (RCAC) in DB2 10.1 for LUW is a neat and simple means of shielding your data
from users who don’t need to see it. It’s really two things melded together:

• Row permissions : which only return the rows of data that you are permitted to see

• Column masks : which over-write or obscure returned values with specified alternatives

Used together they can provide a useful security layer but there are a few usage considerations to be aware of.

To set the scene, I have a table called LOGBOOK which contains details of a private pilot’s flying log. A user query
has been run to look at what was logged in the year 2011. The SQL for this query is shown below and this query will
be used throughout :

Select LOGBOOK_KEY,

Date(Brakes_Off) as FLIGHT_DATE,

REGISTRATION,

CAPACITY,

PILOT,

FROM_AIRFIELD,

CHECK_PILOT_ID

from LOGBOOK.logbook

where year(Brakes_Off) = '2011'

order by Brakes_Off

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 232 24.01.2011 G-AYJR P1 Self EGBT -

 233 17.04.2011 HB-CFN P1S Self LFSB -

 234 30.04.2011 G-AYJR P1S Self EGBT UKFE236606A/A

 235 21.06.2011 HB-CFN P1S Self LFSB -

 236 21.06.2011 HB-CFN P1S Self LFGB -

 237 23.07.2011 G-ETME P1S Self EGLM -

 238 28.07.2011 HB-CFN P1S Self LFSB -

 239 28.07.2011 HB-CFN P1S Self LSZQ -

 240 11.10.2011 G-BORK P1 Self EGBT -

The LOGBOOK_KEY is a generated Primary Key, the airfields are shown using standard International Civil Aviation
Organization (ICAO) codes and there is one row with a check pilot ID, indicating that the flight was a test of some sort.

Column Masks

The DBAs first task is to obfuscate the ICAO codes; specifically to change the value to UK where it’s an airfield in the
UK (as indicated by a leading letter E) and XXXX for anywhere else. The column mask definition for this is

CREATE or REPLACE MASK FOREIGN_AIRFIELD ON LogBook FOR

 COLUMN from_airfield RETURN

 CASE

 WHEN SUBSTR(from_airfield,1,1) = 'E' THEN 'UK'

 ELSE 'XXXX'

 END

ENABLE;

And it is activated with this statement

ALTER TABLE LogBook ACTIVATE COLUMN ACCESS CONTROL;

Now the user running the same flight details query will see the following results

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 232 24.01.2011 G-AYJR P1 Self UK -

 233 17.04.2011 HB-CFN P1S Self XXXX -

 234 30.04.2011 G-AYJR P1S Self UK UKFE236606A/A

 235 21.06.2011 HB-CFN P1S Self XXXX -

Triton Consulting RCAC Hints & Tips

 236 21.06.2011 HB-CFN P1S Self XXXX -

 237 23.07.2011 G-ETME P1S Self UK -

 238 28.07.2011 HB-CFN P1S Self XXXX -

 239 28.07.2011 HB-CFN P1S Self XXXX -

 240 11.10.2011 G-BORK P1 Self UK -

There are two things to be aware of here from the user’s point of view:

1. The fact that you can’t see the underlying data does not prevent you actioning it
2. Your SQL will have the column mask inserted into it by the optimizer

To illustrate the first point, the user could run this INSERT statement

Insert into Logbook

(REGISTRATION,CAPACITY,PILOT,FROM_AIRFIELD,TO_AIRFIELD,BRAKES_OFF,BRAKES_ON,Landings,COMMENTS)

Values

('G-AVLT','P1S','Self','LSZQ','LSZQ','2011-07-30-14.35.00.000000','2011-07-30-15.35.00.000000',6,'TEST

ENTRY')

which includes a non-UK ICAO code (LSZQ). That will work fine, but when the user re-runs the query, an extra row is
visible but not the ICAO code that was just inserted (LOGBOOK_KEY 14).

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 232 24.01.2011 G-AYJR P1 Self UK -

 233 17.04.2011 HB-CFN P1S Self XXXX -

 234 30.04.2011 G-AYJR P1S Self UK UKFE236606A/A

 235 21.06.2011 HB-CFN P1S Self XXXX -

 236 21.06.2011 HB-CFN P1S Self XXXX -

 237 23.07.2011 G-ETME P1S Self UK -

 238 28.07.2011 HB-CFN P1S Self XXXX -

 239 28.07.2011 HB-CFN P1S Self XXXX -

 14 30.07.2011 G-AVLT P1S Self XXXX -

 240 11.10.2011 G-BORK P1 Self UK -

This is because the Column Mask was created without any context checking. Anyone accessing this data will now
have the data obfuscated for them. In order to address this issue, the column mask definition needs to be changed to
allow some users, maybe just the DBAs, to see the raw data. This can be accomplished by setting up a ROLE and
assigning specific users to that ROLE, e.g.

CREATE ROLE DBA

GRANT ROLE DBA to USER userid

And including the following clause as the first WHEN clause in the Column Mask definition

 WHEN VERIFY_ROLE_FOR_USER(SESSION_USER,'DBA') = 1 THEN from_airfield

The contextual clauses in the Column Mask definition can be as complex or as simple as you like. For example, I can
redefine the mask as:

CREATE or REPLACE MASK FOREIGN_AIRFIELD ON LogBook FOR

 COLUMN from_airfield RETURN

 CASE

 WHEN SESSION_USER = 'MGILLIS' THEN from_airfield

 WHEN SUBSTR(from_airfield,1,1) = 'E' THEN 'UK'

 ELSE 'XXXX'

 END

ENABLE;

This would now allow me, as the DBA, to see all the data that exists in the table in its raw form. However, the user
who just inserted a row will still not see their own values. If the requirement is that the user always gets to see their
own data regardless of the rest of the Column Mask definition, then the following may be more appropriate:

WHEN SESSION_USER = LAST_UPDATED_BY THEN from_airfield

Triton Consulting RCAC Hints & Tips

To the second point, you might like to run an EXPLAIN on your query and then a db2exfmt to see what is going on
under the covers. The output from db2exfmt will show the Original Statement and the Optimized Statement. What
you will also get in between these two is a section headed Statement With FGAC Applied. The user’s original query
will have changed as shown below

Note that the column mask CASE statement is now part of your query and will also show up in the Optimized
Statement. This shouldn’t have any significant effect at this stage (the Timeron value and the access path should be
the same), but bear in mind what the optimizer is up to. In the next posting, I will show the relevance of this when Row
Permissions are being used.

Triton Consulting RCAC Hints & Tips

Part 2

In the previous section we were discussing the Column Mask part of the RCAC feature. To recap, there are 2 parts to
RCAC

• Column masks : which over-write or obscure returned values with specified alternatives

• Row permissions : which only return the rows of data that you are permitted to see

I’m going to try and illustrate some of the concerns that can accompany the use of this feature. I’m going to use the
same example as in the previous section: a table called LOGBOOK which contains details of a private pilot’s flying
log. A user query has been run to look at what was logged in the year 2011. The SQL for this query is shown below

Select LOGBOOK_KEY,

Date(Brakes_Off) as FLIGHT_DATE,

REGISTRATION,

CAPACITY,

PILOT,

FROM_AIRFIELD,

CHECK_PILOT_ID

from LOGBOOK.logbook

where year(Brakes_Off) = '2011'

order by Brakes_Off

The output from this query would currently be as shown below (Note that the values in the column

FROM_AIRFIELD are obfuscated because the Column mask from the previous section is still in operation).

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 232 24.01.2011 G-AYJR P1 Self UK -

 233 17.04.2011 HB-CFN P1S Self XXXX -

 234 30.04.2011 G-AYJR P1S Self UK UKFE236606A/A

 235 21.06.2011 HB-CFN P1S Self XXXX -

 236 21.06.2011 HB-CFN P1S Self XXXX -

 237 23.07.2011 G-ETME P1S Self UK -

 238 28.07.2011 HB-CFN P1S Self XXXX -

 239 28.07.2011 HB-CFN P1S Self XXXX -

 14 30.07.2011 G-AVLT P1S Self XXXX -

 240 11.10.2011 G-BORK P1 Self UK -

Row Permissions

The second task the DBA wants to accomplish is to implement a row permission that will only show the flights with a
Check Pilot. This will be created and enabled as follows

CREATE or REPLACE PERMISSION CHECK_RIDES ON LogBook FOR ROWS WHERE CHECK_PILOT_ID is not null ENFORCED FOR

ALL ACCESS enable

ALTER TABLE LogBook ACTIVATE ROW ACCESS CONTROL

The result set that the user query retrieves will now just be a single row as shown below. Note that the column mask is
now operating in conjunction with the row permission, as the Airfield ICAO code is still obfuscated

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 234 30.04.2011 G-AYJR P1S Self UK UKFE236606A/A

Triton Consulting RCAC Hints & Tips

Now take another look at what the optimizer has done under the covers

The WHERE clause has been modified and a different access path has been invoked.

Triton Consulting RCAC Hints & Tips

Original Access Path

Access Path after Row permissions applied

The user query execution estimate using the row permission is slightly worse than the original. That may not always
be the case but implementing a RCAC could have significant performance considerations and it is worth checking out
what the optimizer does to the access plan before releasing it into production. From a user or application point of view,
a query with an acceptable execution time may change to unacceptable without the application query having been
altered.

Triton Consulting RCAC Hints & Tips

Part 3

In the previous two sections we were discussing the Column Mask and Row Permissions as two separate entities,
with potentially different impacts to your database. I’m now going to try and demonstrate some of the issues that can
occur when you have the two features enabled on the same table.

I’m going to use the same example as in the previous section to illustrate these issues.: a table called LOGBOOK
which contains details of a private pilot’s flying log. A user query has been run to look at what was logged in the year
2011. The SQL for this query is shown below

Select LOGBOOK_KEY,

Date(Brakes_Off) as FLIGHT_DATE,

REGISTRATION,

CAPACITY,

PILOT,

FROM_AIRFIELD,

CHECK_PILOT_ID

from LOGBOOK.logbook

where year(Brakes_Off) = '2011'

order by Brakes_Off

The output from this query would currently be as shown below. There are actually 10 rows of data that would
qualify without RCAC being in place, but the Row Permissions have only allowed one row to be returned,
because only one row has a CHECK_PILOT_ID value. The values in the column FROM_AIRFIELD are altered
(the returned row should have the value EGBT) because the Column mask from the first section is still in
operation.

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 234 30.04.2011 G-AYJR P1S Self UK UKFE236606A/A

Masks and Permissions in conjunction

The other little gotcha to bear in mind is how the column mask and the row permissions actually operate. The column
mask is being applied to data after it has been retrieved and is changing your view of what is there. That’s how we are
able to insert data that we are not subsequently allowed to see. We could also UPDATE and DELETE data that is
protected, or rather, obfuscated by the mask. Not so with the row permission.

Consider this statement
Insert into Logbook

(REGISTRATION,CAPACITY,PILOT,FROM_AIRFIELD,TO_AIRFIELD,BRAKES_OFF,BRAKES_ON,Landings,COMMENTS)

Values

('G-AVLT','P1S','Self','EGBT','EGBT','2011-07-30-14.35.00.000000','2011-07-30-15.35.00.000000',6,'TEST

ENTRY')

The problem with this is that the data doesn’t include a Check Pilot ID, so the result you get is

SQL20471N The INSERT or UPDATE statement failed because a resulting row did not satisfy row permissions.

SQLSTATE=22542

That’s pretty clear, but what if you try and update or delete a row that you’re not supposed to see? I happen to know
that there’s a row in the table with a Primary Key of 232 (see below for the results of the query before RCAC was
applied):

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 232 24.01.2011 G-AYJR P1 Self EGBT -

 233 17.04.2011 HB-CFN P1S Self LFSB -

 234 30.04.2011 G-AYJR P1S Self EGBT UKFE236606A/A

 235 21.06.2011 HB-CFN P1S Self LFSB -

 236 21.06.2011 HB-CFN P1S Self LFGB -

 237 23.07.2011 G-ETME P1S Self EGLM -

 238 28.07.2011 HB-CFN P1S Self LFSB -

 239 28.07.2011 HB-CFN P1S Self LSZQ -

 240 11.10.2011 G-BORK P1 Self EGBT -

But if I try and delete it, whilst the RCAC Row Permissions are in place, the response is:

Triton Consulting RCAC Hints & Tips

SQL0100W No row was found for FETCH, UPDATE or DELETE; or the result of a query is an empty table.

SQLSTATE=02000

It is there but we’re not allowed to see it. The response is slightly misleading, if logically accurate.

Row permissions are applied before the query is executed and column masks after. Hence the concern about the
access paths when row permissions are applied and hence the slightly misleading responses to UPDATE and
DELETE statements.

Removing Masks and Permissions

And thereby hangs the last gotcha I wanted to mention. If the DBA now drops the column mask, the users query
results set becomes

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 234 30.04.2011 G-AYJR P1S Self EGBT UKFE236606A/A

Note that the Airfield ICAO code is once again visible, but that the result set only contains a single row because the
row permission is still in place. So, now, the DBA drops the row permission and the users result set becomes

LOGBOOK_KEY FLIGHT_DATE REGISTRATION CAPACITY PILOT FROM_AIRFIELD CHECK_PILOT_ID

----------- ----------- ------------ -------- ------------------------- ------------- ---------------

 0 record(s) selected.

This is because there is nothing now to refer to in terms of row permissions, so the default result set will be nothing.
The row permissions will be examined to find out what the user is allowed to see; if there are no row permissions,
they’re not allowed to see anything.

The DBA can remove the RCAC rows and permissions by running the two commands below and all the users data will
be visible as it was in the first query we ran.

ALTER TABLE LogBook DEACTIVATE ROW ACCESS CONTROL ;

ALTER TABLE LogBook DEACTIVATE COLUMN ACCESS CONTROL;

RCAC is a great feature and offers significant security options for the DBA, the business and the application but, like
just about everything in the database, it’s got something that will come back and bite you if you’re not ready for it.

About Triton Consulting
Triton Consulting specialises in Data Management and has been an IBM Premier Business Partner since 1998.
Specialising in DB2 for both the mainframe and distributed systems, Triton provides a full range of services from
consultancy through to education and 24/7 DB2 support.

For more information visit www.triton.co.uk

