
Solution overview

Primary deliverable
Automated static code
analysis of DB2 for z/OS DDL

Technologies used
DB2 for z/OS / BMC Change
Manager for DB2 / GitHub
Enterprise / SonarQube /
IBM UrbanCode Deploy /
Visual Studio Code / Jira

Principal benefits
Reduced development
cycle times

Quality and reliability of each
deployment has improved

Industry Leading Consultancy and Support 	 www.triton.co.uk

The Challenge
Change Manager already handled much
of the heavy lifting when it came to the
mechanics of deploying DB2 schema
changes. The problem was the highly
manual way in which it was used: changes
would often be requested via an email or a
spreadsheet, which then required the DBA
to be allocated to the task and manually
enter the details into Change Manager via
an ISPF session – a time-consuming and
error-prone process.

The resultant “velocity mismatch” between
application and database change was
negating many of the potential benefits
of the institution’s DevOps initiative. Triton
Consulting were asked to design, develop
and deploy a solution that would automate
the deployment of DB2 schema changes,
without compromising the quality or
stability of the production environment.

DB2 for z/OS Schema
Automation
A large financial institution wished to implement DevOps practices
for their mainframe platform to increase the speed and quality
of development.

The DBAs made extensive use of BMC’s Change Manager tool
for implementing DB2 schema changes. This was a tried and
tested solution that could generate a script to implement a
given change, automatically dealing with any underlying
complexities (such as the need to drop and re-create objects
that couldn’t be changed via a simple ALTER, while retaining
data and dependent objects such as views and indexes)

Industry Leading Consultancy and Support 	 www.triton.co.uk

Empowering Engineers
Given that BMC’s Change Manager was already
known and trusted by the DBAs, it was decided to
base the automated deployment around the proven
capabilities of this product. Triton implemented a
robust methodology using a versioned set of “primary
DDL” datasets that represent a single version of the
truth, to be used as a basis for all deployments. The
BMC Change Manager deployment process was then
encapsulated in a set of JCL procedures and honed to
the extent that the entire end-to-end process would
run reliably as a set of batch jobs.

As IBM’s UrbanCode Deploy (UCD) product was already
widely used as the standard way of deploying code, it
was a natural choice to also adopt it to orchestrate the
Change Manager batch jobs. This allowed DB2 schema
changes to be easily deployed alongside code changes,
while UCD’s GUI interface made the deployment process
more accessible to non-mainframe developers.

With this basic level of automation in place, developers
were able to directly request the deployment of a new
set of schema changes for a given environment (either
via UCD’s web interface or via a Jenkins build job or a
REST API call). The automation would then take over to
generate a BMC Change Manager script to implement
the change within the requested environment. The DBA
team would receive an automatic email notification
asking them to review the script and either approve or
reject it, thereby retaining overall control and preventing
poor or ill-advised changes from proceeding.

Assuming the DBA was happy with the change, a single
button click would release the script and allow the
change to be implemented. A process that used to take
days or sometimes weeks could now happen in minutes.

Enhancing the Process
With the basic process automated and delivering
key benefits, attention turned to a number of
enhancements to further reduce cycle times and
improve quality. These included:

•	�GUI for viewing/editing DB2 data models.
With the initial solution, engineers would create a new
version of the “primary DDL” for a given DB2 object
and edit it using ISPF. This required mainframe access
and good knowledge of DB2’s DDL syntax – not always
ideal. By introducing a GUI editing tool (Visual Studio
Code with the IBM Db2 for z/OS Developer Extension),
engineers could more easily view and amend the
DB2 data model without these disadvantages.
Changes made in Visual Studio Code can be
automatically versioned in GitHub Enterprise and
immediately copied to the relevant mainframe
LPARs ready for deployment.

•	�DDL Static Analysis.
The automated process to copy the DDL to each
mainframe LPAR presented an ideal opportunity to
enforce some quality assurance checks on the newly-
generated DDL before it became available for use. A
custom plugin was written for SonarQube (an open-
source tool to perform static analysis) and some rules
were provided to allow basic quality checks to be
enforced (such as site naming standards, DDL physical
design guidelines). Any DDL failing these checks didn’t
get deployed to the mainframe LPARs and therefore
couldn’t be deployed until it had been corrected.

A single button click would
release the script and
allow the change to be
implemented in minutes,
instead of days.

A custom plugin was written
for SonarQube and some
rules were provided to
allow basic quality checks
to be enforced

The Solution

The automation has transformed the
client’s approach to deploying DB2 schema
changes. Developers and engineers can
now use a modern GUI to specify changes
to their DB2 data model, with quality checks
ensuring that only “clean” DDL is available
on the mainframe for deployment.

Schema changes can be requested simply by dragging
a Jira ticket to a new column, and deployments that
require both code and database changes can be easily
coordinated within a single request. Skilled DBAs no
longer need to manually re-type changes and mindlessly
deploy them to environment after environment, and can
spend their valuable time on higher-value activities such
as tuning and problem diagnosis.

Above all, the classic promise of DevOps has
been realised:

while the quality and
reliability of each
deployment has improved

development cycle times
have been significantly
reduced

The Results

Rob Gould Business Development Lead
+44 (0) 7766 838 904
rob.gould@triton.co.uk

Paul Stoker Sales & Marketing Director
+ 44 (0) 870 241 1550
paul.stoker@triton.co.uk

Contact

Industry Leading Consultancy and Support 	 www.triton.co.uk

•	�Copy Back Processing
With the ability to more rapidly and safely deploy
schema changes through to production, an
additional requirement was identified to ensure
any parallel environments that were skipped on
the way to production could be retro-fitted with
the new schema version. The automation already
logged each deployment (to a DB2 table) so it was
relatively straightforward to construct a “copy
back” process to ensure that all prior environments
were automatically upgraded to at least the level
just implemented in production. This process was
triggered automatically following a successful
production deployment.

•	�Drag and Drop Deployments with Jira
Although schema change deployments could
be easily triggered via the UCD web interface or
Jenkins scripts, many application teams already
made extensive use of Jira to document and track
the status of schema changes through each
environment on the route to live. Using Jira triggers
and Jenkins, further automation was developed to
allow deployments to be triggered entirely from Jira,
by simply dragging a ticket on a Kanban board. The
UCD Jira plugin was also used, to allow the Jira ticket
to be automatically updated as the deployment
progressed.

Using Jira triggers and
Jenkins, further automation
was developed to allow
deployments to be triggered
entirely from Jira

The customer is now looking at repeating this
approach for several other aspects of their mainframe
environment, including DB2 REST Services and CICS
application definitions.

Talk to our expert team
about how DevOps could help you get more from your mainframe

