
Configuring Db2
Pacemaker HADR cluster
with QDevice in AWS
By Damir Wilder

triton.co.uk

www.triton.co.uk

Contents

Introduction	 3

The Prerequisites 	 4

Install Db2	 5

Create Db2 Instance	 7

Install Pacemaker 	 7

Install AWS CLI 	 8

Clone the Servers	 8

Set up Passwordless SSH	 8

Set up Hosts Files	 9

Create the Db2 Database	 9

Configure the Db2 Database for HADR	 9

Configure the Pacemaker Cluster	 11

Create the VIP resource using the AWS Overlay IP address	 12

Configure the ACR (Automatic Client Reroute)	 15

Install and configure a QDevice Quorum 	 15

Corosync Heartbeat Hardening	 18

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 2

https://www.triton.co.uk

AWS Region – VPC

Introduction
This article will demonstrate how a Db2 Pacemaker/HADR cluster with a QDevice can be
deployed on RHEL9 virtual servers in the AWS VPC (Virtual Private Cloud) environment.
The latest (currently available) version of Db2 will be used for this exercise: v11.5.9, which includes the required
Pacemaker filesets.

The cluster will use a separate server as the Quorum Device, which is probably the best option for both reliability
and simplicity (read more about the QDevice options in the Db2 Knowledge Centre).

Moreover, the HADR nodes will be spread across different AZs (Availability Zones) within the same AWS Region,
providing availability even in a case of a whole Data Centre (AZ) failure. This will require the configuration of the AWS
Overlay IP, which will be used as the HADR cluster’s VIP address (i.e. the single “end point”, or IP address, which all remote
clients use to connect to the database, regardless of which HADR node – and in which AZ – is the current primary).

Lastly, the ACR (Automatic Client Reroute) will be configured and used (together with the AWS Overlay IP) to
provide seamless and automatic client re-connection to the database in case of a failover.

When everything is done, the complete Pacemaker/HADR cluster will look like this:

Also, I will assume the user AWS account has already been set up and working properly, allowing us access to the
AWS VPC (Virtual Private Cloud) where all instances can and will be created (as well as all other required AWS
resources), without restrictions. None of this will be discussed here, as it’s out of the scope of this article.

(Note: Pacemaker comes prepackaged with Db2 since v11.5.6, and for earlier versions it must be downloaded and installed
separately).

Note: throughout this document, I have used the following terms interchangeably, while they all mean
the same: server == AWS instance == virtual machine == environment == platform == node.

AZ1: private subnet 1 AZ2: private subnet 2

AZ3: private subnet 3

EC2 – Quorum
device

DB2 Pacemaker
HADR cluster

AWS Overlay IP

Corosync
heartbeat

Corosync
heartbeat

HADR
replication

Corosync
heartbeat

Internal
Remote
Clients

External
Remote
Clients

EC2 – Primary Db2
instance

EC2 – Standby Db2
instance

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 3

https://www.ibm.com/docs/en/db2/11.5?topic=component-quorum-devices-support-pacemaker
https://www.triton.co.uk

The Prerequisites
One way to check if there are any missing prerequisites before starting the Db2 (and Pacemaker) installation
(and then investigating why it failed) is to first run the db2prereqcheck utility, which is available as a part of the
Db2 installation package.

But, in my experience, this tool tends to miss some prerequisites (and reports some which don’t seem necessary),
so I usually end up investigating why my Db2/Pacemaker installation failed anyway.

Therefore, I will simply list all the filesets that I had to install to get Db2 and Pacemaker installed and running OK.

Following is a list of commands I used to install the missing filesets on my Linux (RHEL9) servers:

Additionally, I always try to disable the SE (Security Enhanced) Linux, unless specifically told otherwise, to avoid the
extra administration overhead (outside of Db2!) and the additional prerequisites and is generally a pain in the back
which I like to avoid before it hits me later when I least expect it:

[reboot the server now to activate the change]

The above list can be used as a reference and a starting point to sort out your missing prerequisites.

As I already mentioned in the introduction, all this was done on RHEL9 servers, so if you are running your installation
on another platform, the chances are some of these filesets will already be present (and some other might be
missing). Anyway, trying to install an already installed fileset will just return the information “Fileset already
installed. Nothing to do.” and no harm will be done.

yum install patch
yum install make
yum install kernel-devel
yum install gcc-c++
yum install cpp
yum install gcc
yum install ksh
yum install libaio
yum install libstdc++
yum install python3-dnf-plugin-versionlock
yum install libtool-ltdl-devel

yum install grubby
grubby --update-kernel ALL --args selinux=0

DBT3514W The db2prereqcheck utility failed to find the following 32-bit
library file: “/lib/libpam.so*”.
DBT3514W The db2prereqcheck utility failed to find the following 32-bit
library file: “libstdc++.so.6”.

Note: The db2prereqcheck utility might show two warning messages about the missing 32-bit libraries, but in my
experience, these can be safely ignored (unless you need them for some exotic purpose):

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 4

https://www.ibm.com/docs/en/db2/11.5?topic=security-enhanced-linux-selinux
https://www.ibm.com/docs/en/db2/11.5?topic=nsr-selinux-requirements
https://www.triton.co.uk

And another Note, this one on the fileset libtool-ltdl-devel:

When I first started setting up the Pacemaker/HADR cluster in AWS, I used RHEL8 as the underlying operating
system. And everything was fine, except the fact that this version of the OS was running out of support. Then I
decided to move on to the supported version, RHEL9, and suddenly this one extra fileset (libtool-ltdl-devel)
was also reported as missing. And even worse, it was nowhere to be found – namely, it wasn’t present in any of
the configured default Linux Repositories. But then, after a bit of deep diving, we found the fileset in the RHEL
developer’s repository (codeready-builder-for-rhel-9-x86_64-rpms), which was disabled by default on the
Linux servers I was working with, which is why I couldn’t find the fileset in the first place. All this is well worth
remembering, especially in my inexperienced-Linux-admin mind, in case it happens again.

Install Db2
When all prerequisites are (hopefully) in place, the next step is to run the system installation of Db2.

This will also install the Pacemaker filesets, which come prepackaged in the Db2 installation image (as of Db2
v11.5.6, as mentioned above).

We run the Db2 installation as follows:

The switch “-f NOTSAMP” instructs the installer to not install the TSAMP files, as that won’t be needed any more,
with Pacemaker taking over the role of the “HA Controller” from the TSAMP.

Once again, I get those (unnecessary?) warnings about the missing 32-bit libraries, which I ignore and continue with
the installation:

If all prerequisites are present (and all else goes well), the installer reports the installation was successful:

cd [path_to_wherever_the_Db2_installation_image_was_unpacked]
db2_install -b /opt/ibm/Db2_v11.5.9 -y -f NOTSAMP

DBT3514W The db2prereqcheck utility failed to find the following 32-bit
library file: “/lib/libpam.so*”.
DBT3514W The db2prereqcheck utility failed to find the following 32-bit
library file: “libstdc++.so.6”.

...
The execution completed successfully.
For more information see the Db2 installation log at “/tmp/db2_install.
log.40826”.

...
The execution completed with warnings.
For more information see the Db2 installation log at “/tmp/db2_install.
log.80279”.

Missing Prerequisites
In a case where there are some prerequisites missing, the installer message will look like this:

Missing Prerequisites
In a case where there are some prerequisites missing, the installer message will look like this:

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 5

https://www.triton.co.uk

The Db2 installation log file shows additional information on the missing stuff, for example:

To further check what is wrong with the “PCMK” (yes, this is the Pacemaker!) installation, we must look at the
Pacemaker installation log file:

In this example, we just need to install the missing fileset:

And then repeat the whole Db2 installation (using the same command as before), which will only install the failed
“PCMK” files:

cat /tmp/db2_install.log.80279
 ...
 Installing: PCMK
 WARNING: DBI20105E An error occurred while installing the following file set:
 “�PCMK”. Because these files were not successfully installed, functionality

that depends on these files might not work as expected.

cat /tmp/db2prereqPCMK.log.44256
 ...
 �The db2prereqPCMK utility found that python3-dnf-plugin-versionlock package
is not installed on the system.
 ...

yum install python3-dnf-plugin-versionlock

groupadd -g 1001 db2iadm1
useradd -u 1001 -g db2iadm1 -m -d /home/db2inst1 db2inst1

groupadd -g 1002 db2fadm1
useradd -u 1002 -g db2fadm1 -m -d /home/db2fenc1 db2fenc1

db2_install -b /opt/ibm/Db2_v11.5.9 -y -f NOTSAMP
...
The execution completed successfully.
For more information see the Db2 installation log at “/tmp/db2_install.
log.2315”.

Define Db2 groups and users
Once the Db2 installation is complete, including the Pacemaker files, the next step is to create the OS groups and
users which will be used by Db2:

The Db2 instance owner:

The Db2 fenced user:

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 6

https://www.triton.co.uk

Create Db2 Instance
When the system installation of Db2 is completed successfully, and the users/groups created, we can create the
Db2 instance:

To verify the Db2 instance has been created OK, we can run the db2level command:

Install Pacemaker
The next step of the “system” installation is to install the Pacemaker – this is done from the filesets installed (or
rather, unpacked?) during the Db2 installation.

Quick scan of the system shows where the Pacemaker installation files are located (and this will be under the
directory where the Db2 installation image was unpacked to – in this case /opt/ibm/server_dec)

Next, we run the Pacemaker installation from any of the above directories:

To confirm the installation, we can check if the Pacemaker Daemon executable is present on the server:

cd /opt/ibm/Db2_v11.5.9/instance
./db2icrt -a server -p 50000 -u db2fenc1 db2inst1
 ...
 The execution completed successfully.
 �For more information see the Db2 installation log at “/tmp/db2icrt.

log.1805”.DBI1070I Program db2icrt completed successfully.

find / -name “db2installPCMK”
 /opt/ibm/server_dec/db2/linuxamd64/pcmk/db2installPCMK
 /opt/ibm/server_dec/db2/linuxamd64/bin/pcmk/db2installPCMK

/opt/ibm/server_dec/db2/linuxamd64/pcmk/db2installPCMK -i
 Installing “Pacemaker”
 Success
 DBI1070I Program db2installPCMK completed successfully.

find / -name “pacemakerd”
 /usr/sbin/pacemakerd
 /usr/src/debug/pacemaker-2.1.6-4.db2pcmk.el8.x86_64/daemons/pacemaker

su - db2inst1
db2level
 Db21085I This instance or install (instance name, where applicable:
 “db2inst1”) uses “64” bits and Db2 code release “SQL11059” with level
 identifier “060A010F”.
 Informational tokens are “Db2 v11.5.9.0”, “s2310270807”,
 “DYN2310270807AMD64”,and Fix Pack “0”.
 Product is installed at “/opt/ibm/Db2_v11.5.9”.

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 7

https://www.triton.co.uk

Install AWS CLI
We must not forget to install the AWS CLI on the Db2 servers as well, which will be required later on for the
configuration of the AWS Overlay IP resource.

The best (and most up-to-date) way to do this is to follow the detailed AWS documentation.

When we’re done, the “aws” command should work from the command line:

Clone the Servers
Db2 HADR Nodes

– �after the (system) installation of the first node is complete, as described in the above steps, either repeat the
same process step by step on the second node (and all other nodes, if aiming for a HADR cluster with more
than one Standby), which can be tedious, or do it the “cloudy” way: clone the server by shutting it down; taking
a snapshot of it (see here: AMI – Amazon Machine Image); and then creating a new AWS instance (node) from
that snapshot. That’s quick, nice, and easy, just as we like it!

QDevice
– �this server does not need all Db2 installation files, just the corosync-qnetd RPM (which can be found on an

existing Db2 node and copied via SSH – see the details here), so can be created clean from the AWS console
(not using the Db2 node snapshot as described above).

When all required servers have been cloned or step-by-step configured, we can proceed with setting up the rest
of the system resources (which will differ from server to server), the Db2 resources, the HADR cluster and the
Pacemaker cluster.

Set up Passwordless SSH
The passwordless SSH must be enabled between all cluster nodes for the root user and the Db2 instance owner
user ID (db2inst1).

Root user must also be able to use the passwordless SSH between all cluster nodes and the QDevice server.

This is done by exchanging the public SSH keys between root (and db2inst1) user accounts. Once again, in the
interests of saving the space, I will not go into the details here but point you to decent documentation on how this
can be done.

aws --version
 �aws-cli/2.7.4 Python/3.9.11 Linux/4.18.0-513.9.1.el8_9.x86_64 exe/x86_64.
rhel.8

From my experience, here are a few notes worth remembering when setting up the passwordless SSH:

– leave the SSH passphrase empty.

– �probably a good idea to remove the banners (/etc/motd, /etc/ssh/my_banner, …) straight away, so that they
don’t interfere with the Pacemaker configuration later.

– �copy the root’s public SSH key to the local authorized_keys file as well, Pacemaker seems to need this when
configuring the cluster.

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 8

https://docs.aws.amazon.com/cli/latest/userguide/getting-started-install.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/AMIs.html
https://www.ibm.com/docs/en/db2/11.5?topic=option-install-configure-qdevice-quorum
https://www.redhat.com/sysadmin/passwordless-ssh
https://www.triton.co.uk

Set up Hosts Files
The host’s file is a Linux system file located in the /etc directory of each host.

This file must be edited (on all nodes) to include the relevant information for all cluster nodes, including the
QDevice: IP address, long server name (Fully Qualified Domain Name), short server name (alias).

The instance user and root ID must be able to use SSH between the two hosts using both Fully Qualified Domain
Name and hostname aliases.

Create the Db2 Database
At this point we are ready to create the Db2 database, which will then be set up for the high availability and
disaster recovery.

In this example we will create the SAMPLE database by running the following commands on the “primary-to-be”
node, logged in as the Db2 instance owner (db2inst1):

In real life, we will likely want to use an existing database (or restore a database from a backup image) and there is
nothing wrong with that, the rest of the process remains the same.

Configure the Db2 Database for HADR
Once the database has been created (from the scratch, from the backup, or else…), we must configure it for the log
archiving, if this hasn’t been done already:

Then, we take a full DB backup and transfer it to the “standby-to-be” node:

On the “standby-to-be” node, we proceed to restore the database:

Note: Editing the local hosts file is probably not necessary if the above can be handled by the DNS, but I’ve included
it here for completeness (not all of us know how to setup DNS, or have access to it!), and because it is mentioned in
the documentation.

cd ~/sqllib/bin
./db2sampl

db2 backup db SAMPLE online include logs
scp SAMPLE.0...20231213143617.001 db2inst1@hadr_stby:/home/db2inst1

mkdir ~/logarchive
db2 restore db SAMPLE from . taken at 20231213143617
 Db20000I The RESTORE DATABASE command completed successfully.

mkdir ~/logarchive
db2 “update db cfg for SAMPLE using LOGARCHMETH1 ‘disk:/home/db2inst1/
logarchive’”
db2 backup db SAMPLE

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 9

https://www.ibm.com/docs/en/db2/11.5?topic=manager-installing-pacemaker-cluster
https://www.triton.co.uk

The last step to do is configure the HADR parameters:

– on the Primary:

– on the Standby:

Now we are ready to start the HADR on the Primary and the Standby:

First the Standby:

Then the Primary:

When both commands complete (without errors), we can check the HADR status by running the following
command (on either server):

So, now our database is running within a HADR cluster, which means if the active server (Primary) fails, the
Standby server will still contain a complete and up-to-date copy of the database. But the failover must be initiated
by hand, HADR does not do this for us. Therefore, we have up until now covered only the disaster recovery (DR)
aspect of the HADR.

To get the high availability (HA) feature as well (that is, fully automated failovers), we must configure the Pacemaker
cluster. We will do this next.

db2 “update db cfg for SAMPLE using HADR_LOCAL_HOST hadr_prim”
db2 “update db cfg for SAMPLE using HADR_LOCAL_SVC 50100”
db2 “update db cfg for SAMPLE using HADR_REMOTE_HOST hadr_stby”
db2 “update db cfg for SAMPLE using HADR_REMOTE_SVC 50100”
db2 “update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1”
db2 “update db cfg for SAMPLE using HADR_TARGET_LIST ‘hadr_stby:50100’”
db2 “update db cfg for SAMPLE using HADR_PEER_WINDOW 120”

db2 “update db cfg for SAMPLE using HADR_LOCAL_HOST hadr_stby”
db2 “update db cfg for SAMPLE using HADR_LOCAL_SVC 50100”
db2 “update db cfg for SAMPLE using HADR_REMOTE_HOST hadr_prim”
db2 “update db cfg for SAMPLE using HADR_REMOTE_SVC 50100”
db2 “update db cfg for SAMPLE using HADR_REMOTE_INST db2inst1”
db2 “update db cfg for SAMPLE using HADR_TARGET_LIST ‘hadr_prim:50100’”

db2 start HADR on db SAMPLE as standby
 Db20000I The START HADR ON DATABASE command completed successfully.

db2 start HADR on db SAMPLE as primary
 Db20000I The START HADR ON DATABASE command completed successfully.

db2pd -d SAMPLE -hadr

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 10

https://www.triton.co.uk

Configure the Pacemaker Cluster
The required Pacemaker resources are created by running the command db2cm with appropriate options, under
the root user account. This command can be executed on any node (Primary, Standby) in the cluster (excluding the
QDevice node, unless it was made a part of the Pacemaker cluster):

– the cluster and the public network resources:

- the instance resource, for Primary:

- the instance resource, for Standby:

- the database resource:

With all this, the Db2 database (i.e. the whole HADR cluster) has been put under the Pacemaker control.
To verify this, run the following command (on all HADR nodes):

The output should look like this (if it doesn’t, something went wrong somewhere…):

The Pacemaker cluster status can be checked with:

And it should show all above defined resources to be up and running (green colour).

Now, if anything happens with the Primary node and it fails, the failover to the Standby node will be automatic and it
will assume the role of the primary node. However, the clients will still need to be reconfigured (manually?!) to access
the Standby node via a different IP address.

To make all this even better, we will create the VIP resource next and then ACR as well to fully automate the failovers.

cd /home/db2inst1/sqllib/bin/
./db2cm -create -cluster -domain PCM_Domain -host hadr_prim -publicEthernet
eth0 -host hadr_stby -publicEthernet eth0
 Created db2_hadr_prim_eth0 resource.
 Created db2_hadr_stby_eth0 resource.
 Cluster created successfully.

./db2cm -create -instance db2inst1 -host hadr_prim
 Created db2_hadr_prim_db2inst1_0 resource.
 Instance resource for db2inst1 on hadr_prim created successfully.

./db2cm -create -instance db2inst1 -host hadr_stby
 Created db2_hadr_stby_db2inst1_0 resource.
 Instance resource for db2inst1 on hadr_stby created successfully.

./db2cm -create -db SAMPLE -instance db2inst1
 Database resource for SAMPLE created successfully.

db2 get dbm cfg | grep -i cluster

crm status

Cluster manager = Pacemaker

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 11

https://www.triton.co.uk

Create the VIP resource using the AWS Overlay IP address
In AWS, if we want to spread our HADR nodes across different AZs (as we did in this example), we cannot simply
configure the “standard” VIP address in the Pacemaker as we are used to, because it won’t be able to handle the
routing across the Availability Zones.

Instead, we must use the AWS Overlay IP address as the HADR VIP resource, which is capable of just that – routing
the IP traffic across the different AZs.

There are a few “prerequisite” steps that must be taken to get this done:

Now, on the command line, we create a profile by using the aws configure command:

– �for this, we need to interactively type in the AWS Access Key ID and the Secret Access Key, as well as the AWS region
where our instances are located, so have this information ready! (find more details about the AWS keys here):

If we got everything right, the profile is created, and we can check it with:

1. 	Decide on an (unused) IP address and a network interface that will be used for this purpose:

 	 <OVERLAY_IP>
 	 <ETHx>

	 Note: all hosts must use a network interface with the same name (for example: eth1)

2. 	Disable “source/destination check” for the EC2 instances hosting the IBM Db2 primary and standby database:

	 -go to the AWS Console, select the EC2 Instance in the EC2 Management Console, then select “Actions” and 	
	 “Networking” and set “Change source / destination checking” to “stop”

3. 	Create a policy and attach it to your IAM role by using the AWS IAM Management Console: <ROUTE_TABLE_ID>

aws configure --profile db2-user
 AWS Access Key ID [None]: <AWS_access_key_ID>
 AWS Secret Access Key [None]: <AWS_secret_access_key>
 Default region name [None]: eu-west-2
 Default output format [None]:

aws s3 ls --profile db2-user
 2024-01-19 16:28:30 stackset-triton-aws-config-a94a7a1e-configbuck-
et-1jisngsyqlsxa

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 12

https://docs.aws.amazon.com/IAM/latest/UserGuide/security-creds.html
https://www.triton.co.uk

aws ec2 create-route --route-table-id <rtb-AZ-01> --destination-cidr-block
<OVERLAY_IP> --instance-id <Primary_AWS_Inst_ID> --profile db2-user
 {
 “Return”: true
 }
aws ec2 create-route --route-table-id <rtb-AZ-02> --destination-cidr-block
<OVERLAY_IP> --instance-id <Primary_AWS_Inst_ID> --profile db2-user
 {
 “Return”: true
 }
aws ec2 create-route --route-table-id <rtb-AZ-03> --destination-cidr-block
<OVERLAY_IP> --instance-id <Primary_AWS_Inst_ID> --profile db2-user
 {
 “Return”: true
 }

db2cm -create -aws -primaryVIP <OVERLAY_IP> -rtb <rtb-AZ-01>,<rtb-AZ-02>,
<rtb-AZ-03> -profile db2-user -db SAMPLE -instance db2inst1
 Created overlay IP resource db2_db2inst1_db2inst1_SAMPLE-primary-OIP
 for SAMPLE primary successfully.

Next, we run a set of commands to update the routing tables (one for each AZ!) with the Overlay IP pointing
to the node with the Db2 primary instance (the route-table-ids can be found in the AWS Console, as well as the
AWS ID of the Primary instance):

Finally, we can now create the Overlay IP resource itself (notice the same set of routing table IDs here, as in the
above “create-route” commands):

At this point, if everything went smoothly, we should have our AWS Overlay VIP address available, and from now on
it will serve as a single “end point” which all remote clients (both outside and within AWS) will use to connect to the
SAMPLE database.

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 13

https://www.triton.co.uk

We can check the Pacemaker cluster status, together with the just now created AWS Overlay VIP (highlighted in
red colour, below) and all other defined resources, with the following command:

crm status
 Cluster Summary:
 * Stack: corosync (Pacemaker is running)
 * Current DC: ip-hadr-stby (version 2.1.6-4.db2pcmk.el9-6fdc9deea29) -
partition with quorum
 * Last updated: Fri Jan 19 17:09:07 2024 on ip-hadr-prim
 * Last change: Fri Jan 19 17:08:37 2024 by root via cibadmin on ip-hadr-
prim
 * 2 nodes configured
 * 9 resource instances configured

 Node List:
 * Online: [ip-hadr-prim ip-hadr-stby]

 Full List of Resources:
 * db2_ip-hadr-prim_eth0 (ocf:heartbeat:db2ethmon): Started ip-
hadr-prim
 * db2_ip-hadr-stby_eth0 (ocf:heartbeat:db2ethmon): Started ip-
hadr-stby
 * db2_ip-hadr-prim_db2inst1_0 (ocf:heartbeat:db2inst): Started ip-
hadr-prim
 * db2_ip-hadr-stby_db2inst1_0 (ocf:heartbeat:db2inst): Started ip-
hadr-stby
 * Clone Set: db2_db2inst1_db2inst1_SAMPLE-clone [db2_db2inst1_db2inst1_SAM-
PLE] (promotable):
 * Promoted: [ip-hadr-prim]
 * Unpromoted: [ip-hadr-stby]
 * db2_db2inst1_db2inst1_SAMPLE-primary-OIP (ocf:heartbeat:aws-vpc-move-ip):
Started ip-hadr-prim

Note: For more information on the AWS Overlay IP prerequisites and setup, check out this document!

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 14

https://www.ibm.com/support/pages/setting-db2-hadr-pacemaker-cluster-overlay-ip-virtual-ip-aws
https://www.triton.co.uk

Configure the ACR (Automatic Client Reroute)
With the “single end point” in place, we can now configure the Automatic Client Reroute, which will enable the Db2
clients to automatically reconnect to the database in a case of a failover.

This is done by setting up both HADR servers to use the defined <OVERLAY_IP> as the alternate server hostname:

On Primary:

On Standby:

To check the configuration has been updated successfully, run the following command (output slightly edited to
only show the relevant info – in red colour):

The change is automatic and there is no need to restart the database or the instance. Only the already connected
clients will need to be reconnected to become aware of the change.

Now, it would be a good idea to test the client connections’ resiliency during a failover, to confirm they can survive
the event without any external help, and don’t need any explicit reconnections to the database.

I will not repeat this testing here, as I have already done it, but will instead point you to my blog post where I’ve
described the testing in detail.

Install and configure a QDevice Quorum
Up until now, the Pacemaker has been using the default “Two-node” quorum, which is prone to split-brain
scenarios and is not meant to be used in production environments.

So, let’s take care of this now and set up a QDevice Quorum on a physically separate server!

On the Primary and Standby hosts, ensure that the corosync-qdevice package is installed:

db2 update alternate server for database SAMPLE
 using hostname <OVERLAY_IP> port 50000

db2 update alternate server for database SAMPLE
 using hostname <OVERLAY_IP> port 50000

db2 list db directory
 ...
Database 1 entry:
 Database alias = SAMPLE
 Database name = SAMPLE
 Local database directory = /home/db2inst1
 Database release level = 15.00
 Alternate server hostname = <OVERLAY_IP>
 Alternate server port number = 50000

rpm -qa | grep corosync-qdevice
 corosync-qdevice-debugsource-3.0.3-1.db2pcmk.el9.x86_64
 corosync-qdevice-debuginfo-3.0.3-1.db2pcmk.el9.x86_64
 corosync-qdevice-3.0.3-1.db2pcmk.el9.x86_64
 corosync-qdevice-devel-3.0.3-1.db2pcmk.el9.x86_64

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 15

https://www.triton.co.uk/automating-hadr-failovers-with-pacemaker/
https://www.triton.co.uk

If it is not already installed, we can install it now, taking care to specify the correct path to the installation packages:

In my example, the command looks like this:

But the files are already installed on my Db2 servers, so nothing to be done here.

On the third host (Q-DEVICE), we must install the Corosync QNet software. Again, we need to specify the correct
path to the installation packages, such as:

The installation can be checked with:

Finally, as the root user, we run the db2cm command to setup the QDevice from one of the cluster nodes
(Primary, Standby):

At this point, the setup should be complete, and the Pacemaker cluster should have switched from the default
“two-node quorum” to the more reliable QDevice quorum!

dnf install <Db2_image>/db2/<platform>/pcmk/Linux/<OS_distribution>/
<architecture>/corosync-qdevice*

dnf install /opt/ibm/server_dec/db2/linuxamd64/install/pcmk/Linux/rhel/rhel9/
x86_64/corosync-qdevice*

dnf install /opt/ibm/server_dec/db2/linuxamd64/install/pcmk/Linux/rhel/rhel9/
x86_64/corosync-qnetd*

rpm -qa | grep corosync-qnetd
 corosync-qnetd-debuginfo-3.0.3-1.db2pcmk.el9.x86_64
 corosync-qnetd-3.0.3-1.db2pcmk.el9.x86_64

home/db2inst1/sqllib/bin/db2cm -create -qdevice 172.18.19.90
 Successfully configured qdevice on nodes ip-hadr-prim and ip-hadr-stby
 Attempting to start qdevice on <Q-DEVICE-IP>
 Quorum device <Q-DEVICE-IP> added successfully.

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 16

https://www.triton.co.uk

To verify the QDevice setup, we can run the following commands:

On the Primary and Standby:

On the QDevice host:

corosync-qdevice-tool -s

 Qdevice information

 Model: Net
 Node ID: 2
 Configured node list:
 0 Node ID = 1
 1 Node ID = 2
 Membership node list: 1, 2

 Qdevice-net information

 Cluster name: PCM_Domain
 QNetd host: <Q-DEVICE-IP>:5403
 Algorithm: LMS
 Tie-breaker: Node with lowest node ID
 State: Connected

corosync-qnetd-tool -l

 Cluster “ PCM_Domain”:
 Algorithm: LMS
 Tie-breaker: Node with lowest node ID
 Node ID 1:
 Client address: ::ffff:<hadr-primary-IP>:39642
 Configured node list: 1, 2
 Membership node list: 1, 2
 Vote: ACK (ACK)
 Node ID 2:
 Client address: ::ffff:<hadr-standby-IP>:60674
 Configured node list: 1, 2
 Membership node list: 1, 2
 Vote: ACK (ACK)

Triton Consulting	 triton.co.uk

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 17

https://www.triton.co.uk

Damir Wilder
Senior Consultant
+ 44 (0) 870 241 1550
damir.wilder@triton.co.uk

Rob Gould
Business Development Lead
+44 (0) 7766 838 904
rob.gould@triton.co.uk

Talk to our expert team about
how to achieve high availability and
business continuity with Pacemaker

triton.co.uk

Corosync Heartbeat Hardening
One last thing that we may want to do to make our Pacemaker cluster even more robust is to enhance its network
resiliency by setting up additional heartbeat rings.

The idea here is to set up every heartbeat ring to operate on a separate network interface (and separate network
infrastructure as well), to avoid any single points of failure in the network.

I haven’t tested this concept, because I didn’t have the required network infrastructure in place but would certainly
think very hard about provisioning it for any production and mission-critical environments.

If you’re interested in this concept and want to try it yourself, find the relevant info here or contact us !

Configuring Db2 Pacemaker HADR cluster with QDevice in AWS	 18

mailto:damir.wilder%40triton.co.uk?subject=Db2%20Pacemaker
mailto:rob.gould%40triton.co.uk?subject=Db2%20Pacemaker
http://www.triton.co.uk
https://www.ibm.com/support/pages/improving-cluster-network-heartbeating-resiliency-db2-hadr-pacemaker
https://www.triton.co.uk/contact/

	p3
	p4
	p5
	p7
	p8
	p9
	p11
	p12
	p15
	p18

	p3:
	p4:
	p5:
	p7:
	p8:
	p9:
	p1:
	p12:
	p18:
	p15:

