
Db2 for z/OS-locking for
Application Developers
By Gareth Copplestone-Jones

triton.co.uk

https://www.triton.co.uk
www.triton.co.uk

Contents
Preface 3

Introduction 3

Data Integrity, Performance and Locking 4

The Characteristics of Database Transactions 5

Db2 Transaction Locking Semantics 7
– Lock Size 7
– Lock Modes 10
– Lock Duration 14

Isolation Levels 16

Data Anomalies 18
– Phantom row or phantom read anomaly 18
– Non-repeatable read anomaly 20
– Dirty read anomaly 21
– Lost update anomaly 22
– Isolation Levels and Data Anomalies 22

Cursors and Data Currency 23
– For-update, Read-only and Ambiguous Cursors 23
– Acquiring and releasing locks for read-only cursors 24
– Lock Avoidance and the CURRENTDATA Bind Option 24
– Combining Read-only Cursors with Searched Updates 25
– Access-Path Dependent Cursors 27
– Locking With Searched Update and Delete 27

Update Applications and Data Integrity 28
– A Sidenote on Optimistic Concurrency Control 32

Additional Considerations 32
– Row level locking 32
– Materialised result sets 33
– RR/RS and non-materialised result sets 33
– Lock avoidance 34

Conclusion 35

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 2

https://www.triton.co.uk

Preface
This technical paper is based on the Triton 10-part blog, also titled ‘Db2 for z/OS-locking
for Application Developers’, but includes some additional material and addresses
comments on the original blog.
The paper is mostly targeted at Db2 for z/OS application developers, but it’s also appropriate for application
designers, database administrators, Db2 systems programmers and other Db2 professionals who are concerned
with data integrity and aspects of application performance related to data integrity and therefore locking.

All references and hyperlinks to the IBM Db2 for z/OS documentation have been updated to point to the Db2 13
documentation, unless otherwise explicitly stated.

Introduction
While this document is called ‘Db2 for z/OS-locking for Application Developers’,
it’s really mostly about data integrity.
In essence, the whole point of locking is just that – enabling the application programmer to ensure data integrity.
This document concentrates on the locks owned by database transactions, the implications for the application
programmer, and the impact those locks have on performance.

While this paper mainly focuses on update transactions in an online transaction processing (OLTP) system, it’s also
relevant to read-only queries and transactions in OLTP systems, and in some online analytical processing (OLAP)
environments. For example, those OLAP systems which are updated in near-real time by data replication processes.

It’s important to emphasize that data integrity and locking-related performance are not solely the responsibility of
the database management system (DBMS). No DBMS can guarantee data integrity and performance if application
programs aren’t coded correctly. To complicate matters for application developers, not all DBMSs use the same
locking mechanism. If you’re developing for Db2 for z/OS, it’s therefore important for you to understand Db2
locking, the ways it is affected by the Db2 BIND options and the consequent implications for the way you code
your application programs. In reality, data integrity is the responsibility of the application designer, the application
developer and the database administrator, by implementing appropriate locking options and coding application
programs in accordance with those options.

This paper, therefore, is intended as a practical guide as to when, how and why Db2 locks data. It provides guidance
on programming techniques designed to avoid logical data corruption whilst minimizing the locking performance
overhead given the data integrity requirements of the application.

This document doesn’t cover everything you might want to know about locking – there is a whole series of topics
which aren’t covered, including:

• Drains and claims
• Restrictive states
• Utility compatibility
• Latches
• LOB locks and XML locks

Data sharing locking is covered, but only in sufficient detail to inform the discussion about data integrity and
application performance.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 3

https://www.triton.co.uk/db2-for-z-os-locking-for-application-developers-part-1/
https://www.triton.co.uk/db2-for-z-os-locking-for-application-developers-part-1/
https://www.triton.co.uk

Figure 1 Logical
Data Corruption

The opening sections on data integrity and on database transactions lay the groundwork for the more practical
discussions later in the paper. There’s a fair bit of terminology to define and some first principles to outline,
particularly the characteristics of database transactions. This discussion will help you understand the “why” of
locking in a DBMS. We then move onto describe how these principles are implemented in Db2 itself in the form of
Db2 transaction locking semantics, including lock size or scope, lock mode, and lock duration. This includes the
central concept of hierarchical locking and the role it plays in enabling the acquisition of locks of different sizes on
database objects, and at the same time ensuring that thousands of transactions can run concurrently. This brings
us onto another crucial concept, transaction isolation levels, and following on from that, four of the most common
data anomalies that database transactions can be exposed to, depending on the isolation level in use.

These lengthy but essential descriptions lead us onto two key topics for application development: result set
materialization with cursors and the effect on data currency; and best practice for coding update applications which
guarantee data integrity. The paper concludes with some additional considerations for application programming
techniques and for lock size selection in special cases.

Data Integrity, Performance and Locking
There are two main reasons why you should be concerned with locking: ensuring
data integrity; and application performance, which includes CPU consumption,
transaction concurrency, and throughput.
Regarding data integrity, if data is not locked, it’s
impossible to stop two (or more) applications updating
the same data records at the same time, inevitably
leading to data integrity problems. Without integrity, the
value of data is severely downgraded, and could affect
the viability of a business. Businesses that are unable
to maintain an accurate ledger of financial transactions
probably wouldn’t stay in business for very long.

What can happen if data is not locked can be
illustrated with a simple diagram, where time
proceeds in the direction of the arrow:

To summarise, two transactions, Transaction A and
Transaction B read table “sample_table” with the
intention of updating column Col Y of Row X. When
they read Row X, Col Y has a value of ‘5’. Let’s say that
Transaction A adds 10 to that value in program working
storage and makes a database call to update the value
of Col Y of Row X to 15. Transaction B is unaware of the
update to Col Y of Row X, and from the point of view of
Transaction B, Col Y still has a value of 5. Transaction B
adds 5 to that value in program working storage and
makes a database call to update the value of
Col Y of Row X to 10, overwriting the update made by
Transaction A. Col Y of Row X is now logically corrupt.

Time T1:
Transaction A reads
Row X of sample_table
with the intention of
updating it.
Col Y = 5

Time T3:
Transaction A updates
Col Y of Row X.
Col Y = value read + 10
= 5 + 10 = 15

Time T5:
Transaction A commits

Time T4:
Transaction B updates
Col Y of Row X.
Col Y = value read + 5
= 5 + 5 = 10

Time T6:
Transaction B commits
Col Y of Row X is now
logically corrupt

Time T2:
Transaction B reads
Row X of sample_table
with the intention of
updating it.
Col Y = 5

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 4

https://www.triton.co.uk

This resulting logical data corruption can be avoided by controlling access to the data by using locks. If, taking the
diagram above (which we’ll see again in a more detailed discussion), Transaction B wants to access data that has been
locked and updated by Transaction A, then because Transaction A’s lock prevents any other concurrent transactions
from reading the data, the database manager makes Transaction B wait until the lock taken by Transaction A is
released. This is known as a lock suspension or lock wait. When Transaction A completes its update and releases the
lock, Transaction B can continue processing and sees Transaction A’s updates. This process of making transactions
wait for locks on database objects and allowing them to continue when those locks can be acquired is known as the
suspend/resume process. Suspend/resume not only adds to elapsed times, but it also adds to CPU times.

Furthermore, as well as any CPU overhead incurred in the suspend/resume process, taking a single lock requires a
very small amount of CPU. Whilst a single lock on its own might not incur significant overhead, taking many locks
can, adding to the CPU cost and increasing elapsed times. Therefore, the ideal locking strategy is to lock all the data
that needs to be locked in order to guarantee data integrity, but for performance reasons to acquire only the locks
absolutely needed, and to hold those locks no longer than necessary, to minimize contention and lock waits.

You’ve probably noticed that at time T1, that Transaction A reads a row with the intention of updating it, as does
Transaction B at time T2. The concept of intent locks is an important one for facilitating the acquisition of locks of
different sizes on a given database object whilst at the same time enabling transaction concurrency. We’ll cover
intent locks in the section on Db2 Locking Semantics. You’ve also probably realized that, in this example, for
the lock to be effective in protecting data integrity, Transaction A needs to acquire the lock on Row X at time T1
and prevent Transaction B acquiring itS-lock until after time T5, when Transaction A commits. This is another key
concept: acquiring and releasing locks at the right time is vital for ensuring data integrity.

Locking in Db2 is more sophisticated than this simple example. But before we get into detail about Db2 locking
itself, it’s necessary to discuss the characteristics of database transactions.

The Characteristics of Database Transactions
We all instinctively know that locking is required for data integrity, but to understand
the implications for application programs, we need to identify what are the characteristics
required of database transactions to guarantee data integrity.
Back in 1983, German computer scientists Andreas Reuter and Theo Härder wrote a landmark paper, "Principles
of transaction-oriented database recovery” in which they set about establishing a framework for “transaction-
oriented recovery schemes for database systems”. In doing so, they answered the question: what are the
characteristics of a database transaction required to guarantee data integrity? Their paper was based on real-world
experience of transactional systems in a shared database environment, from which the authors were able to derive
a standard and time-tested set of required properties of database transactions or logical units of work (LUW) that
guarantee data integrity and consistency even in the event of errors, power failures, and so on. These database
transaction properties are known by the acronym ACID1 (you can find a copy of the article in the Association for
Computing Machinery Digital Library). Those properties are:

• Atomicity: either all of a transaction’s updates are made to the database, or none of them are.

• Consistency: the database manager must enforce all defined consistency rules; the data must be changed
from one consistent state at the start of a transaction to another consistent state at the end.

• Isolation: all transactions must be executed, from a data point of view, as though no other transactions
are being executed at the same time.

• Durability: once a transaction is committed, then its updates are preserved, irrespective of any system failures.

1 Reuter and Härder built on the material in an earlier, pivotal paper by Dr Jim Gray, "The Transaction Concept: Virtues and Limitations" which included
the properties of atomicity, consistency and durability, but not isolation.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 5

https://dl.acm.org/doi/10.1145/289.291
research.microsoft.com/~gray/papers/theTransactionConcept.pdf
https://www.triton.co.uk

Reuter and Härder’s stated objective was to provide a “clear methodological and terminological framework” for
database recovery. From their point of view, it’s the responsibility of the DBMS to provide logging, recovery, backout
and crash restart capabilities for the day-to-day operation of the database, and this is something Db2 does, along
with many other database management systems. In terms of database recovery, the database transaction is an
important concept as transaction synchronization points provide the basis for consistent database states.

However, as Reuter and Härder make clear, integrity of the data being read and updated in a multiuser environment
depends on preventing “uncontrolled and undesired interactions” between concurrent database transactions.
The most obvious way of preventing those uncontrolled interactions is by locking the data so that concurrent
transactions can’t act on the same data. As we’ll see, the application programs must be written in such a way as
to exploit the features (primarily locking-related) provided by the DBMS to guarantee data integrity. If application
programs aren’t coded using the correct techniques, then the possible consequences include the data anomalies
discussed later in this paper.

This paper mostly concentrates on the properties or principles of atomicity and isolation, because the application
program and the database server share the responsibility for ensuring compliance with these two principles.
Durability can be regarded primarily as the responsibility of the DBMS itself, ensuring that when a transaction
commits the changes are made permanent in the database. This is achieved by logging database updates and by
writing them to disk. Consistency from an application programming point of view is not discussed in any detail,
because this arises from standard good programming practices. For example, when performing a funds transfer
between two accounts, the application should ensure that the sum of the two account balances at the start of the
transaction is identical to that at the end.

In considering database transactions properties, the next question is, what is a database transaction? A database
transaction is a set of interactions between the application and the database, where the database is changed
from one consistent state to another. That is, a transaction consists of a set of database reads and updates which
form a logically consistent unit of work such as a bank balance transfer from one account to another. A database
transaction ends when the application indicates to the DBMS that it wants to make its database changes permanent
by issuing a COMMIT. If the transaction terminates before it issues a COMMIT, then the database manager must
backout all the updates the transaction made, to ensure the database remains in a consistent state. This complies
with the Atomicity principle, where either all the database updates of a transaction are made permanent, or none of
them are.

The challenge is to integrate the ACID properties and high performance into the design of database transactions.
While the isolation property states that all transactions must be executed from a data point of view as though no
other transactions are being executed at the same time, in a real-world system multiple database transactions
must be able to run concurrently against the same database.

To explain the transaction isolation/concurrency challenge simply, let’s take a couple of straightforward examples.
Firstly, if a database table is locked for update by a transaction, no other transaction can even read the table while
the lock is held. Readers must wait until the update (exclusive) lock is released. Secondly, if a table is locked for
read, no-one else can update the table while the lock is held. Other transactions can read the table, but update
transactions must wait until the read (share) lock is released.

It would be easy to meet the demands of transaction isolation by running database transactions one at a time,
serially. Apart from the fact that this is an inefficient use of expensive computing resources, it would prevent
enterprises from running the high-volume, high concurrency workloads required to conduct their business. The
pragmatic solution to this is for the DBMS to allow the application designer to choose the degree of transaction
isolation and push the responsibility for data integrity and performance onto the application programmer. Db2, like
other database systems, does this by providing multiple transaction isolation levels which the application designer
can choose from. These are discussed in detail in the section on Isolation Levels.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 6

https://www.triton.co.uk

The various transaction isolation levels strongly influence the way the DBMS locks data on behalf of the application.
There are four lock attributes that together with the transaction isolation level determine the balance between the
ideal goal of transaction isolation (“all transactions must be executed, from a data point of view, as though no other
transactions are being executed at the same time”) and concurrency:

• The size of the lock – whether it is held on a database, table, or row (for example). This is typically known
as the lock size.

• The state of the lock – whether, for example, it is an exclusive lock or a share lock. This is known as the lock
state or lock mode.

• When the lock is acquired.

• How long the lock is held – whether it is held until the end of the transaction or for a shorter period.
This is known as lock duration.

We’ll look at these in detail in the next section on Db2 transaction locking semantics.

Db2 Transaction Locking Semantics
This brings us onto the Db2 locking mechanism. The locking behaviour of a DBMS
is often referred to as locking semantics, with each DBMS using its own semantics.
Oracle locking semantics, for example, are different from those used by Db2 for z/OS. In the case of Db2, a solid
understanding of how it locks data by acquiring locks at the tablespace, table, page, or row levels is needed for you
to be able to guarantee data integrity when striking the balance between transaction isolation and concurrency. The
design point of standard2 Db2 locking semantics is to always present committed data and only committed data to
the application (with the “dirty read” exception, which is discussed later). That is, the data is always transactionally
consistent – if an in-flight transaction has updated some data, other transactions wanting to access that data must
wait until the first transaction issues a commit to tell Db2 to make its changes permanent. After the commit, Db2
releases the locks3.

Given this, an implication is that Db2 decides what to lock, when to lock it, and when to release the lock, subject to
the bind options and tablespace attributes in effect. This is mostly true, with a few exceptions such as the SQL DML
statement LOCK TABLE IN SHARE MODE, which we’ll come across later.

Lock Size
This brings us onto two key parts of Db2 locking semantics – lock size and hierarchical locking

Db2 allows you to choose the lock size by specifying whether to lock at the tablespace, table, page, or row level via
the LOCKSIZE attribute of the CREATE or ALTER TABLESPACE DDL statement. To optimize transaction concurrency
and to allow transactions to take locks of differing sizes on a given database object, Db2 uses a mechanism called
hierarchical locking (see Figure 2), with tablespace/partition at the top of the hierarchy and page/row at the bottom.
A lock is always acquired at the top level of the hierarchy, without exception. If you specify LOCKSIZE TABLESPACE
or TABLE,4 locks are only obtained at the top of the hierarchy. Locks are obtained at the bottom level in the
hierarchy only if you specify LOCKSIZE PAGE or LOCKSIZE ROW (or LOCKSIZE ANY, which in most cases results in
LOCKSIZE PAGE).

2 I say “standard” because Db2 10 for z/OS introduced limited support for another locking semantic called multi-version concurrency control, referred to in the
Db2 documentation as “currently committed data”. This was, at least in part, intended to make porting applications from other database managers easier.

3 Alternatively, if the application encounters an error it can’t recover from, Db2 rolls back the all the changes made by the transaction to a prior point of
consistency. A side effect of a roll back is that it extends the period of time locks are held, increasing any lock contention.

4 According to the Db2 SQL Reference, you should specify LOCKSIZE TABLE only for a segmented (non-UTS) tablespace. In practice, it only makes sense to
specify this for a multi-table segmented tablespace, bearing in mind that these are deprecated as of Db2 12 function level 504, or for a multi-table simple
tablespace – these have been deprecated since Db2 9 for z/OS

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 7

https://www.triton.co.uk

Figure 2 Db2 Hierarchical Locking

If you specify LOCKSIZE TABLESPACE, even if the tablespace is a classic partitioned tablespace, a UTS partition by
range (PBR) tablespace, or a UTS partition by growth (PBG) tablespace, Db2 locks all partitions. However, if you
specify LOCKSIZE PAGE or ROW for those type of tablespace, top-level locks are obtained at the partition level,
not the tablespace level, as illustrated in the green box in Figure 2.

Tablespace locks for LOCKSIZE TABLESPACE are sometimes known as gross locks because the application acquires
a share or exclusive lock on the entire object. If you specify LOCKSIZE PAGE or ROW, you only acquire share and
exclusive locks on the page or row, but you also acquire locks on the tablespace or partition known as intent
locks. You can also get gross locks even with LOCKSIZE PAGE/ROW by coding EXEC SQL LOCK TABLE IN SHARE/
EXCLUSIVE MODE.

What’s the difference between a gross lock and an intent lock? To expand on the definition of a gross lock as a lock
on the entire object (tablespace, partition, or table), it’s a way of implicitly obtaining that lock on every single page
or row in the tablespace without the CPU and elapsed time cost of acquiring all those locks. Gross locks can be
useful for performance reasons in a number of circumstances, including:

• If you know that the tablespace is read-only and is never updated when it is being read. For example, if a
reference table only needs to be updated once a day, replacing the contents of the tablespace using the LOAD
utility is possible if the daily schedule shuts the read-only application down long enough for the table to be
updated.

• If you know that an application program is the only one accessing the table, then it’s safe to take an exclusive
lock preventing any other user from accessing while the program is running while at the same time minimizing
the CPU and elapsed time cost of locking.

In all these cases, If the number of pages/rows accessed is small, it might be difficult to measure the CPU and
elapsed time savings. On the other hand, if the number is large, the benefits can be very significant.

CREATE/ALTER TABLESPACE ...
LOCKSIZE ANY
LOCKSIZE TABLESPACE
LOCKSIZE TABLE
LOCKSIZE PAGE
LOCKSIZE ROW

Segmented and simple
tablespace locking

Tablespace

Table

Partition

Page Row

Page Row

Classic partitioned tablespace and
universal tablespace locking

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 8

https://www.triton.co.uk

While applications accessing that tablespace will run more quickly and cheaply than if they acquired page or row
locks, there is a significant impact on concurrency. Share-mode gross locks prevent any concurrent transactions
from updating the table, and exclusive-mode gross locks prevent any other concurrent transactions from accessing
the table at all. Be aware that gross locks are held until the transaction commits or terminates.5

An intent lock is very different. It signals a database transaction’s intention to read or update a tablespace
concurrently with other transactions which are reading or updating the tablespace. This is dependent on them
also taking intent locks6 which indicate that the transactions might also hold locks on other database objects at a
lower level in the hierarchy. With Db2 locking semantics, intent locks are essential if there is concurrent access to
a tablespace involving updates as well as reads. Given that most Db2 for z/OS databases are used for OLTP, most
tablespaces are defined with LOCKSIZE PAGE or ROW. There is an option to specify LOCKSIZE ANY, and although
this nearly always resolves to LOCKSIZE PAGE, it is recommended that you explicitly specify the lock size, if only
for documentation purposes. Like gross locks, intent locks are held until the transaction terminates or commits
(depending on the package bind option – see the later discussion on the RELEASE package attribute in the section
on Lock Duration). Note that you cannot explicitly request intent locks – these are always acquired implicitly when
an application requests a page or row lock.

The theoretical underpinning of the concept of intent locks as a necessary feature of hierarchical locking is presented
in a 1976 IBM paper by J. Gray, R. Lorie, G. Putzolu and I. Traiger, “Granularity of Locks and Degrees of Consistency in a
Shared Data Base”. In this paper, they demonstrate that the introduction of hierarchical locking allows a transaction
requiring locks of a small scope (such as page, row, or record) to implicitly acquire an intent lock (which they call an
“intention lock”) at a higher level in the hierarchy, indicating to the lock manager (the DBMS) that the transaction
can also acquire locks at a lower level in the hierarchy. This solves the problem of how the DBMS can resolve the
compatibility of locks of different scopes or sizes such as in the case where one transaction needs a lock at the table
level and another at the row level. In the terms of the authors, hierarchical locking provides a “locking protocol which
allows simultaneous locking at various granularities by different transactions”, where they use the term ‘granularity’ to
refer to lock scope or size. In the case of Db2, this is done by checking, for example, if a request for a share or exclusive
lock at the tablespace or partition level is compatible with an existing intent lock on the same tablespace or partition.

Locks on pages and rows are not categorized as either gross or intent locks, because gross locks and intent locks
only apply at the object level (table space, table, or partition). With LOCKSIZE PAGE or ROW, concurrent transactions
can take share, exclusive or update locks (see the next section on lock modes for information about update locks)
on pages or rows in the same table. Assuming LOCKSIZE PAGE, if Transaction A acquires a share lock on page 1500,
other concurrent transactions can acquire share or update locks on the same page, but not exclusive locks.

This brings us onto the question of why you should ever use LOCKSIZE PAGE instead LOCKSIZE ROW.
The answer to that depends on several factors:

• In most cases, LOCKSIZE ROW incurs more overhead in a data sharing environment, so LOCKSIZE PAGE is
preferred in data sharing where possible.

• If your application is likely to access several rows in the same page, page level locking requires fewer locks
and less CPU time.

• If your application accesses a single row per page, the CPU overhead is identical for LOCKSIZE PAGE
and LOCKSIZE ROW.

• LOCKSIZE ROW only has an advantage where concurrent transactions require locks on different rows
in a given page, where the locks would be incompatible with LOCKSIZE PAGE.

Essentially, page level locking is a bet that that level of lock granularity is fine enough to avoid locking conflicts.
In most applications, this works well, but if you experience excessive contention then LOCKSIZE ROW may be justified.

This brings us onto the discussion on lock modes.

5 The BIND option that affects this, RELEASE(COMMIT|DEALLOCATE) is discussed later in this paper.
6 This is with the exception of the rare SIX lock, a sort of hybrid gross/intent lock that is described later.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 9

web.eecs.umich.edu/~jag/eecs584/papers/lock-granularity.pdf
web.eecs.umich.edu/~jag/eecs584/papers/lock-granularity.pdf
https://www.triton.co.uk

Lock Modes
With standard Db2 locking semantics, the lock mode or lock state determines the degree of concurrent access
allowed to a row, page, table, or tablespace; for example, whether multiple transactions can concurrently read the
same data row. Different lock modes are acquired depending on whether the database object (tablespace, page,
or row) is being updated or read, and on the lock size.

Now, some lock modes are only available at the tablespace level, some are available at all levels in the hierarchy,
but the effect on concurrency varies considerably depending on whether gross locks or intent locks are taken at the
tablespace level. The design default for all tablespaces should be LOCKSIZE PAGE (or ROW where justified, of which
more later), as this causes Db2 to acquire intent locks rather than gross locks at the tablespace level, allowing much
greater concurrency.

With the exception of the SQL LOCK TABLE statement and some other rarely used SQL clauses (for example, USE
AND KEEP UPDATE LOCKS), Db2 selects the lock mode for the object based on the LOCKSIZE attribute and the SQL
DML statements that reference the object. We’ll go through the lock modes in some detail before explaining how
the SQL statement determines the lock mode chosen.

The lock modes available at the partition, tablespace, and table levels only are:

• IS (Intent Share)

• IX (Intent Exclusive)

• SIX (Share with Intent Exclusive)

The lock modes available at the partition, tablespace, table, page, and row levels (that is, all levels of the locking
hierarchy) are:

• S (Share)

• X (Exclusive)

• U (Update)

There are some subtle differences between the way the lock modes operate at the top of the hierarchy and the bottom,
so we’ll deal with lock modes at the tablespace level first and lock modes at the page and row levels afterwards.

Tablespace lock modes
The two main intent lock modes, IS and IX, provide the best transaction concurrency, as they are the least restrictive
and rely on page/row level locks to ensure data integrity. Intent locks are only acquired when the tablespace is
defined via the CREATE or ALTER SQL DDL statements with the LOCKSIZE PAGE or LOCKSIZE ROW attribute.

The IS (intent share) lock indicates that the application is accessing the tablespace with the intention of reading one
or more rows. An application that acquires an IS-lock can read but not change data in the tablespace. It might also
acquire page or row locks. Concurrent processes with IS or IX-locks can read and change the data using page or row
locks – this is a key advantage of the IS-lock. IS-locks are chosen with LOCKSIZE PAGE/ROW if Db2 can detect at
BIND time (or PREPARE time for dynamic SQL) that the table is only being accessed for read.

The IX (intent exclusive) lock indicates that the application is accessing the tablespace with the intention of reading
and possibly updating one or more rows. An application that acquires an IX-lock can both read and change data
in the table and might also acquire page or row locks – a page or row lock is always required on any data changed.
Concurrent processes with IS or IX-locks can read and change the data, using page or row locks – as with IS-locks,
this is a key point of the IX-lock. IX-locks are chosen with LOCKSIZE PAGE/ROW if Db2 detects at BIND time (or
PREPARE time for dynamic SQL) that there is an actual or possible intent to update the table; for example, if the
application program includes a cursor defined with a FOR UPDATE OF clause or an INSERT statement.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 10

https://www.triton.co.uk

The two main gross lock modes, S and X, provide very limited concurrency, and are acquired with LOCKSIZE TABLE/
TABLESPACE or the SQL DML statement LOCK TABLE IN SHARE/EXCLUSIVE MODE. Because page/row locks are
not needed, applications acquiring S and X-locks use less CPU resource.

The S-lock (share) allows the application to read, but not change, data in the tablespace. Concurrent processes
acquiring S, IS or U tablespace locks can read but not change the data.

The X-lock (exclusive) allows the application to read and change data in the tablespace. No other concurrent
processes can change or read the data.

There are two other locks which can be acquired at the tablespace level, but they are rare cases. These are the
U and SIX-locks.

The U-lock (update) is rare at the tablespace level, as it requires LOCKSIZE TABLE or TABLESPACE and a cursor-
based select with a FOR UPDATE OF clause. There is no such SQL statement as LOCK TABLE IN UPDATE MODE for
acquiring a tablespace U-lock. An application with a U tablespace lock can read but not change locked data: when
the application tries to change the data, Db2 attempts to promote the U to an X tablespace lock. Like the S and X
tablespace locks, the U tablespace lock does not need page or row locks. Concurrent processes can acquire
S or IS-locks and read the data, but they cannot acquire any kind of update lock.

The SIX-lock (share with intent exclusive) is possibly even rarer and is acquired when the application already holds
an IX lock, then issues the SQL statement LOCK TABLE IN SHARE MODE. The holder of a SIX lock can read and
change data in the table, but only when data is changed are page or row locks acquired. Concurrent processes can
read data in the tablespace but not change it.

The following table, taken from Db2 13 for z/OS online documentation, illustrates the compatibility of any two lock
modes for partition, tablespace or table locks :

If two or more different database transactions hold compatible intent locks, it indicates to Db2 that it will need to
check the compatibility of the page or row locks held by those transactions at a lower level in the locking hierarchy

Page and row lock modes
Page and row-level locks are much simpler but bear in mind that the holder of a page or row lock must also
hold an IS, IX, or SIX-lock.

An application holding a page/row S-lock can read but not change the locked page or row. Concurrent processes
can also read but not change the locked page or row, and they can acquire S or U-locks on the page/row or might
read data without acquiring a page or row lock (see the later discussion on lock avoidance).

Lock mode IS IX S U SIX X

IS Yes Yes Yes Yes Yes No

IX Yes Yes No No No No

S Yes No Yes Yes No No

U Yes No Yes No No No

SIX Yes No No No No No

X No No No No No No

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 11

https://www.ibm.com/docs/en/db2-for-zos/13?topic=locks-lock-modes-compatibility
https://www.triton.co.uk

Similarly, an application holding a page/row U-lock can read, but not change, the locked page or row; however,
when the application attempts to change the page/row, Db2 attempts to promote7 `the U-lock to an X-lock.
Concurrent processes can acquire S-locks or read data without acquiring a page or row lock but cannot acquire a U
or X-lock. U-locks reduce the chance of deadlocks when reading a page or row to determine whether to change it.

This table shows the compatibility matrix for page/row locks:

An application holding a page/row X-lock can read or change the locked page or row, and concurrent processes
cannot acquire S, U, or X-locks on the page or row. Conversely, an application cannot acquire an X-lock on a page/
row if a concurrent process already holds an S or U-lock on that page or row.

Bear in mind that there is no compatibility matrix for page/row and tablespace locks. One of the principles of
hierarchical locking is that lock requests are only ever checked for compatibility with other locks at the same level in
the hierarchy.

Incompatible locks
Let’s briefly consider incompatible locks. What happens if two transactions want to access the same data with
incompatible lock modes? For example, transactions A and B both want to update row Z, and transaction A is the
first to issue an UPDATE statement and acquire an X-lock on row Z. Now, transaction B must wait until transaction
A has committed its update before even reading row Z. Db2 detects that transaction B needs a lock on the row,
and suspends transaction B, forcing it to wait for transaction A to commit at which point the lock can be acquired
and transaction B can continue processing. Depending on how long a transaction continues processing between
acquiring a lock on a row and releasing it, other transactions can simply be suspended waiting for a lock, elongating
elapsed times, or can be the victim of a lock timeout or a deadlock.

Deadlocks
If you don’t already understand the concept of a deadlock, consider the example where transaction A has acquired
an exclusive lock on row Z and wants a share lock on row Y. However, transaction B has acquired an exclusive lock
on row Y and wants a share lock on row Z. We now have the situation where transaction A is waiting for a lock on
row Y but transaction B holds an incompatible lock on that row, and transaction B is waiting for a lock on row Z but
transaction A holds an incompatible lock on that row. Without intervention, the two transactions will wait forever.
Db2’s deadlock detection mechanism identifies deadlocks very quickly and chooses one of the transactions as a
“victim”. Db2 abnormally terminates that transaction and rolls back any updates to the start of the transaction (or
previous commit), meaning the other transaction can continue processing.

To express this more formally, a deadlock occurs when:

• Transaction A holds a lock on a database object X (tablespace, page, or row) which is incompatible with
a lock requested, also on object X, by Transaction B.

• At the same time, Transaction B holds a lock on a database object Y which is incompatible with a lock
requested, also on object Y, by Transaction A.

 7 When Db2 tries to change the mode of lock to a more restrictive one, this is known as lock promotion. There are some cases where Db2 can scale back
a lock mode to a less restrictive one. This is known as lock demotion.

Lock mode S U X

S Yes Yes No

U Yes No No

X No No No

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 12

https://www.triton.co.uk

Deadlock situations can be more complex and therefore more difficult to diagnose, involving more than two
transactions and more than two database objects, but the principles are the same.

Timeouts
The concept of lock wait timeout is much simpler. Db2 system parameter IRLMRWT determines how long a
transaction should wait for a lock before Db2 abnormally terminates it and rolls it back. The longer a transaction
holds a lock, the likelier it is that other transactions will timeout while waiting for a lock on that page or row.

Limiting the number of locks held by a transaction
If there are many page or row locks on a given tablespace, that can stress the system for reasons including the
memory and CPU resource required to manage those locks. To limit those effects, Db2 provides the system
administrator with two controls. The first control, the system parameter (ZPARM) NUMLKTS specifies a system-
wide limit on the maximum number of locks that can be acquired on a tablespace. This is a default attribute which
can be over-ridden at the tablespace level by the second control, the attribute LOCKMAX. If the number of page
or row locks exceeds this value, then lock escalation occurs. With lock escalation, Db2 attempts to release the
page or row locks, and then acquire a tablespace gross lock to replace the intent lock. That is, Db2 attempts to
replace an IX-lock with an X-lock, and an IS-lock with an S-lock.

In one way this is good, because it can improve performance by reducing the CPU cost of locking and in some
specific cases can work well. On the other hand, lock escalation usually impacts the production service adversely,
because it inhibits concurrency and increases the chance of lock contention, timeouts, and deadlocks. A transaction
holding an IS-lock on a tablespace is compatible with other transactions holding IX-locks, whereas a transaction
holding an S-lock is not.

Because lock escalation can be disruptive, Db2 records every occurrence in the Db2 System Services message log
with message DSNI031I in the as illustrated in Figure 3. Many Db2 sites use automation to capture these messages
and report on them so that action can be taken to avoid lock escalation.

Lock size recommendations
This brings us on to some lock size recommendations:

• When coding for concurrent access to Db2 data, you should avoid LOCKSIZE TABLESPACE, as this is very likely
to serialize access to the tablespace. Exclusive (X) locks definitely will, while share (S) locks allow concurrent
read access but no updates.

• Use LOCKSIZE PAGE as a design default. In most cases, this will provide the best balance between locking the
data for integrity reasons, transaction concurrency, CPU resource consumption and transaction performance.

Figure 3 Lock Escalation message

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 13

https://www.triton.co.uk

• Use LOCKSIZE ROW where justified – some applications are dependent on LOCKSIZE ROW for concurrency
reasons. The disadvantage with LOCKSIZE ROW is that it will increase the number of locks taken and therefore
CPU overhead where many rows per page are accessed and is more likely to lead to lock escalation than
LOCKSIZE PAGE.8 However, if the application only accesses one row per page, then the number of locks taken
is the same with LOCKSIZE PAGE and LOCKSIZE ROW. Nevertheless, bear in mind that LOCKSIZE ROW increases
the data sharing overhead.

• Avoid lock escalation:

 - For long-running applications which update many rows, typically batch applications, commit frequently.

 - Set NUMLKTS and LOCKMAX realistically to prevent lock escalation without causing unnecessary
application failures.

 - In some rare cases, allowing lock escalation can be an effective strategy. For example, where there
is a clear distinction between OLTP and overnight batch processing.

• Avoid RR and RS isolation levels (of which more later).

There are no real lock mode recommendations: for LOCKSIZE PAGE or ROW, Db2 uses the least restrictive lock
mode required to guarantee data consistency/integrity in line with the transaction isolation level in effect
(discussed later) while maintaining transaction concurrency.

Lock Duration
This brings us onto the next characteristic of Db2 for z/OS-locking: lock duration. Lock duration is important not
only for concurrency but also for atomicity.

There are two lock durations to consider: those for tablespace or partition locks; and those for page or row locks.

Tablespace locks, be they gross locks or intent locks are always acquired on first use, regardless of the setting
for the ACQUIRE bind option. That is, when the first SQL request that references the associated table is issued.
Lock duration for tablespaces/partitions is determined by the RELEASE option of the BIND/REBIND command,
which has two options:

• RELEASE(COMMIT): with this options, tablespace and partition locks are held for the duration of the
commit scope.

• RELEASE(DEALLOCATE): with this option, tablespace and partition locks can potentially be held across
multiple commit scopes. The objective is to avoid the repeated CPU cost of frequently acquiring and
releasing intent locks. There are two potential uses for RELEASE(DEALLOCATE):

 - Batch programs with intermediate commits, as discussed earlier.

 - High-volume transactions running under CICS protected entry threads, pseudo-WFI IMS transactions
or high performance DBATs can hold tablespace locks (typically intent locks) across many transactions.

Like tablespace and partition locks, page and row locks are always acquired when the page or row is first accessed.
That can be at cursor open time if the result set is materialised in a work-file (for example, if a sort is required) or at
fetch time. In other words, when the locks are acquired is dependent on the access path. Be aware that with SELECT,
UPDATE and DELETE, locks can be acquired on rows when they are evaluated, and not just on the qualifying rows;
with UPDATE and DELETE they always are, whereas with SELECT this is dependent on the CURRENTDATA bind
option. Depending on a variety of factors, if the rows qualify, the locks may be released, retained, or promoted.
Which rows are evaluated is dependent on the access path.

8 Some applications require row-level locking to avoid contention, and some tablespace design options such as MEMBER CLUSTER with APPEND also require
row-level locking (in the MEMBER CLUSTER case, to avoid exponential growth in the tablespace size resulting from massively parallel insert processing).
LOCKSIZE ROW can impact performance as it increases the data sharing overhead.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 14

https://www.ibm.com/docs/en/db2-for-zos/13?topic=services-acquire-bind-option
https://www.triton.co.uk

How long are page and row locks held? Lock duration is determined by several factors, excluding factors such as
lock escalation:

• The isolation level – see Isolation Levels, which details how long page and row locks are held for each isolation
level.

• The lock mode (S, U, X).

• The CURRENDATA option of the BIND/REBIND command – see the later topic on cursors and data currency.

• Whether or not a cursor is declared using the WITH HOLD attribute.

 - When a cursor specification includes WITH HOLD, the cursor is not closed when the application issues a
commit. In addition, any locks that are necessary to maintain the cursor position, including intent locks,
and page locks or row locks, are held past the commit point, into the next commit scope.

With short lock durations, there is less potential for locking conflicts between concurrent applications, and a
smaller impact in terms of lock suspension times and elapsed times. Exclusive locks, taken when data is changed,
must be held until the commit point. This applies to all isolation levels and enforces compliance with the atomicity
principle of ACID – that is, that either all of a transaction’s updates are made to the database, or none of them are
made. Before clarifying the role COMMIT plays for a transaction, let’s consider what would happen if all the changes
to data made by an application were made permanent in the database for every single SQL call.9

Consider a business process which makes several SQL calls when processing a funds transfer between two bank
accounts, with autocommit in effect. That is, the transaction issues a commit after every database call. The business
transaction requires at least two SQL calls to change the data, but probably more if it: reads the data before
updating it; writes audit data to database tables; records historical data such as a transaction log; and so on. Imagine
the worst case, a system failure part way through the business process (for example, a subsystem abend or a power
failure). When the system comes back up the data no longer has integrity. The logical relationship between the
database calls cannot be detected by the DBMS itself, which sees each call as a separate database transaction and
logical unit of work. This situation is also extremely difficult for the application or the DBA to detect and correct.
The same applies to transaction abnormal terminations.10

It’s clear, therefore, that to comply with the atomicity principle, a database transaction must group its SQL calls into
a logical unit of work demarcated by a commit scope. This brings us onto two clarifications about commits. Firstly,
a commit point marks the end of a logical unit of work and indicates that all updates are to be made permanent in
the database – from the DBMS point of view, the database transaction has complied with the atomicity, consistency,
and durability properties. Well-behaved, long-running processes with restart capability, typically batch jobs, make
intermediate commits to limit the number of locks held, to improve concurrency, and to reduce the length of the
backout process in the event of a failure. Secondly, a commit scope is the period between two commit points (the
start of the transaction can be regarded as an implicit commit point), or to put it another way, the period between
two consistent database states.

To round out the topic on lock duration, we need to move onto the isolation levels supported by Db2 many other
databases, and many transaction servers.

9 This is known as “autocommit”, which is supported as a connection property for distributed clients using the IBM Data Server Driver. Autocommit
is rarely used for update applications, but often used for read-only applications.

10 If autocommit is used for a business process that includes multiple update statements (INSERT, UPDATE, DELETE), then the business process needs to
record every update SQL call it makes in an application log. This log will be needed for backout, restart and recovery to ensure the data is consistent from
the business process point of view. All that’s needed for guaranteed data corruption after a subsystem or transaction failure is for the failure to occur
between an SQL call and the update to the transaction log that records the update SQL event.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 15

https://www.triton.co.uk

Isolation Levels
The four isolation levels supported by Db2 (RR, RS, CS and UR) comprise the next
important component of the Db2 locking mechanism.
They balance transaction isolation (“all transactions must be executed, from a data point of view, as though no
other transactions are being executed at the same time”) and concurrency – multiple transactions potentially
accessing the same data running alongside each other – with some isolation levels favouring strong transaction
isolation and others favouring concurrency. Given the different degrees of transaction isolation, it becomes the
responsibility of application programmers to comply with the principles embodied in the ACID properties by
adjusting their programming techniques accordingly.

The four Db2 isolation levels are determined at the package level at BIND time for both static and dynamic SQL
and control the trade-off between isolation and concurrency. The isolation level specified for a package can be
overridden for individual SELECT statements by adding a ‘WITH UR/CS/RS/RR’ clause. Moreover, if you specify WITH
RS or RR, you can specify which lock mode Db2 should use by additionally specifying USE AND KEEP EXCLUSIVE/
UPDATE/SHARE LOCKS. Remember, however, that executing any UPDATE or DELETE statement will result in an
exclusive lock being acquired.

The isolation level determines how long locks are held – lock duration – and to some extent which locks are held.
This is also affected by the CURRENDATA BIND option, which will be covered later.

The four isolation levels are:

• Repeatable Read (RR)

• Read Stability (RS)

• Cursor Stability (CS)

• Uncommitted Read (UR)

These are the Db2 names, which is important because these are the terms used when binding a package or specifying
the isolation level for a SELECT statement. Confusingly, ANSI11 isolation level names are different from Db2’s. As we go
through the isolation levels in order of least to most concurrency, I’ll also give you the equivalent ANSI isolation level
names which may well be familiar to Java developers, together with some explanatory history.12 These isolation levels
became the industry standard in the ANSI/ISO SQL-92 specification.

The following discussion assumes the use of LOCKSIZE PAGE or ROW, with Db2 using intent locks rather than gross
locks at the tablespace or partition level.

We’ll start off with RR – Repeatable Read, which is one of the two original Db2 isolation levels. If a single RR transaction
runs the same query twice, it is certain to see the same set of values (no more and no less). An INSERT, UPDATE or
DELETE by another concurrent transaction which would change the result set is not allowed (the current transaction is
able to do so, however). In Db2, all accessed rows or pages are locked until the next commit point, even if they do not
satisfy the predicate. That is, all evaluated rows are locked until the next commit. For page level locking, if a row on
the locked page is not even evaluated, that row remains effectively locked until the next commit. Not surprisingly,
the RR isolation level is more likely to lead to lock escalation, as this isolation level is likely to acquire the most locks.

11 Strictly speaking, the current standard is not an ANSI standard, but a standard written by an ANSI-approved committee, and the current standard is “The SQL
Standard – ISO/IEC 9075:2016”. You can read more about it in this ANSI blog entry. Sadly, the content of the SQL Standard is only available to subscribers.

12 This topic is more complicated and controversial than presented here; the topic of database transaction isolation levels and potential data anomalies is
widely debated in industry and academic circles. This paper is intended as a practical guide for Db2 for z/OS development, but for a broader discussion the
1995 ACM article “A Critique of ANSI SQL Isolation Levels”

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 16

https://blog.ansi.org/2018/10/sql-standard-iso-iec-9075-2016-ansi-x3-135/
www.cs.umb.edu/~poneil/iso.pdf
https://www.triton.co.uk

The standard name for this isolation level is Serializable, which makes sense if you remember that it appears to a
repeatable read transaction that it’s being executed, from a data point of view, as if no other transactions are being
executed at the same time – that is, it appears as if the transactions are being executed serially.

The next isolation level is RS – Read Stability. This makes sure that, if a transaction reads the same row twice, it will
have the same value, but does not prevent new rows from appearing during the execution of the transaction. That
is, DELETE by another transaction is prohibited, but INSERT is allowed, as is an UPDATE which changes an existing,
non-qualifying row such that it now qualifies for and appears as a new row in the result set.13 All rows or pages
satisfying any stage 1 predicates are locked until the application commits, plus all rows or pages evaluated during
stage 2 processing, whether or not they qualify. Like RR, the RS isolation level can cause many locks to be held and
therefore is more likely to lead to lock escalation than other isolation levels (apart from RR). Read Stability was
introduced into Db2 after the SQL-92 standard was published. However, the SQL-92 name for this isolation level is
Repeatable Read.

The factor that most inhibits concurrency with both RR and RS, therefore, is the fact that both of them hold all
page and row locks – S, U and X – from the time they are acquired to the next commit point, with U-locks being
promoted to X-locks if a row or page is actually updated.

The other original Db2 isolation level, CS or Cursor Stability also differs from the SQL-92 name, Read Committed.
With CS, Db2 locks the row on which the cursor is positioned but keeps the lock for the minimum time necessary,
that is, until the next row is fetched, or a commit point is reached. This applies to both U-locks and S-locks; U-locks
are released when the application fetches the next row but are promoted to an X-lock if the row/page is updated,
and the X-lock is retained until the application reaches a commit point.

Now, there are some implications with Cursor Stability. It ensures your transaction doesn’t read a row that’s been
changed by another uncommitted unit of work, but it does allow other concurrent transactions to change a row
that’s already been read by your application before you reach a commit point. The consequence is that, if the same
query is executed more than once in a CS transaction, it might get a different result set. However, provided you
update rows read via a cursor by using a positioned update (WHERE CURRENT OF <cursor_name>) combined with a
cursor defined with FOR UPDATE OF, then you can update the row with confidence because Db2 uses a U-lock to
protect the row or page.

Another consequence of Cursor Stability is that it is less likely to lead to lock escalation, certainly in the case of
read-intensive applications, which is better for concurrency. And as S and U page or row locks are typically held
for a much shorter period, there are fewer and shorter lock waits, and reduced application contention with CS
than RR or RS. This should result in improved performance – faster transactions and higher throughput.

Before we finish the discussion on Cursor Stability, there is one more topic to introduce. I previously said that,
with CS, “Db2 locks the row on which the cursor is positioned but keeps the lock for the minimum time necessary”.
That is not completely true. Depending on the setting of the CURRENTDATA bind option, Db2 might lock the row
on which the cursor is positioned or might avoid taking a lock altogether. We’ll discuss this in detail later, in Lock
Avoidance and the CURRENTDATA Bind Option.

The final Db2 isolation level is Uncommitted Read (UR), whose name is almost the same as that of the
corresponding SQL-92 isolation level, Read Uncommitted. Known also by the unflattering name Dirty Read, it
allows a transaction to see rows that have been updated by another concurrent transaction which has not yet
committed its updates. This can lead to inconsistent data anomalies, as it is possible that the other transaction
terminates abnormally, and its updates are rolled back by Db2.

13 This is only true if the row failed stage 1 processing – if it was eliminated from the result set by stage 2 processing, then it is locked until commit
and therefore cannot be updated by a concurrent transaction.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 17

https://www.triton.co.uk

However, Uncommitted Read avoids the CPU and elapsed time cost of locking as it takes no row or page locks.
However, it does acquire a special lock called a mass-delete lock. This prevents any other transaction executing
an SQL DELETE with no WHERE clause, which of course empties the table out. An Uncommitted Read transaction
will not result in lock escalation.

Uncommitted Read is only recommended where the application can tolerate inconsistent data. I mentioned above
the case where one transaction reads another transaction’s uncommitted updates are subsequently rolled back
because the second transaction terminates abnormally. Consider another case where the second (concurrent
transaction) is partway through a number of updates which form a logically consistent unit of work. The UR
transaction risks seeing some rows which have been updated, and some which haven’t, meaning it’s view of the data
is logically inconsistent. This is often referred to as transactionally inconsistent data – all the other isolation levels
provided transactionally consistent data. Having said that, some applications can tolerate inconsistent data and
for these UR is highly recommended because of the reduced CPU cost, better performance benefits and improved
concurrency.

In concluding this discussion on transaction isolation levels, it’s hopefully clear by now that for OLTP (online
transaction processing) or for high concurrency read-write applications, the default design decision should be to
use Cursor Stability, including any batch programs. Use the other isolation levels where necessary but be very wary
of the severe impact on concurrency with isolation RR or RS, and the potential to see uncommitted updates with
isolation UR.

Data Anomalies
Behind the discussion on locking and isolation levels are several data anomalies
that applications are potentially exposed to, depending on the level of transaction
isolation in effect.
The four anomalies discussed here are not the only ones you’ll find in the technical literature, but they
are the most relevant for this discussion:

• The phantom row or phantom read anomaly

• The non-repeatable read anomaly

• The dirty read anomaly

• The lost update anomaly

Phantom row or phantom read anomaly
The standard definition of this is that, during the course of a transaction which accesses the same set of rows twice,
new rows are added to the result set – the result set changes. This can be illustrated in Figure 4 on page 19:

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 18

https://www.triton.co.uk

Phantom Read Example 1: A complex analytical transaction reads a large number of rows from a table several
times for joining with multiple other data sets, including other tables and data sources external to the database
manager. Some joins are performed programmatically by the application, others are performed by Db2 itself.
Because of the large number of rows involved, the transaction cannot store them all in its working storage area.
However, if additional rows appear in the result set of two or more SQL statement executions, the analysis is
invalidated.

Phantom Read Example 2: A transaction T1 reads rows from a table using one or more predicates, the predicate
set P1. It programmatically evaluates the result set and makes a decision whether or not to proceed with a searched
update of the entire result set, again using the predicate set P1. If the result set changes with new rows appearing
in the result set because of INSERT or UPDATE operations performed by other transactions between the SELECT
and UPDATE operations performed by transaction T1, then although the ‘phantom’ row is not seen directly by
transaction T1, the premise on which the decision to update the result set is invalidated, and the phantom rows
are updated as well as the rows previously read.

Figure 4 The Phantom Read Anomaly

Time T1:
Transaction A executes
SQL Query 1

Time T2:
Transaction A reads
20 rows from the result
set of Query 1

Time T4:
Transaction A executes
SQL Query 1 again

Time T5:
Transaction A reads
21 rows from the result
set of Query 1

Time T3:
Transaction B inserts a
new row satisfying the
predicate in Query 1

SELECT col_list
FROM sample_table
WHERE cola = :hvar
ORDER BY ...

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 19

https://www.triton.co.uk

Non-repeatable read anomaly
With the non-repeatable read anomaly, a row is accessed more than once during the course of a transaction
and the row values change between accesses:

Again, there is a few use cases where the non-repeatable read anomaly could be encountered, but only one
example is presented:

Non-repeatable Read Example: This example is very like phantom read example 1, but a small difference
distinguishes these two anomalies. A complex analytical transaction reads a large number of rows from a table
multiple times for joining with multiple other data sets, which could be other tables or other data sources external
to the database manager. The join could be performed programmatically by the application, or it could be
performed by the DBMS itself. Because of the large number of rows involved, the transaction cannot store them
all in its working storage area. However, as well as the problem of additional rows appearing in the result set, if any
changed rows appear in the result set or rows from the result set are deleted between executions, the analysis is
potentially invalidated.

Figure 5 The Non-repeatable Read Anomaly

Time T1:
Transaction A executes
SQL Query 1 and reads
Row X from the result set

SELECT col_list FROM
sample_table
WHERE cola = :hvar
ORDER BY ...

SELECT col_list FROM
sample_table
WHERE cola = :hvar
ORDER BY ...

Time T3:
Transaction A updates
row Row X and changes
one or more column
values

Time T2:
Transaction B also
executes SQL Query 1
and reads Row X from
the result set

Time T4:
Transaction B executes
SQL Query 1 again and
finds that Row X has
changed

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 20

https://www.triton.co.uk

Dirty read anomaly
The dirty read anomaly is where a transaction reads
data changed by another transaction, before that
update transaction issued a commit. For a data
integrity exposure to occur, the update transaction
must be rolled back, and the transaction that read the
uncommitted update must commit:

Dirty Read Anomaly Example 1: A bank account
transaction reads rows without being aware if the rows
it sees contain committed data or have been updated
by another transaction which has not yet committed. It
returns the information retrieved back to the end user.
If one or more of the rows read contained uncommitted
updates from another transaction which is subsequently
rolled back, then incorrect information is reported back
to the end user.

Dirty Read Anomaly Example 2: A bank account update
transaction reads rows without being aware whether
the rows it sees contain committed data or have been
updated by another transaction which has not yet
committed. It uses the retrieved data to update other
banking information, either in the same table or one
or more other tables. If any of the data used to drive
updates was read from a row containing uncommitted
updates from another transaction which is subsequently
rolled back, undoing the updates, then data corruption
is possible if not probable.

Figure 6 The Dirty Read Anomaly

Time T1:
Transaction A updates
one or more columns on
Row X of sample_table

Time T3:
Transaction A
encounters an error
and rolls back its
update to Row X

Time T4:
Transaction B continues
with additional SQL
calls before issuing a
COMMIT

Time T2:
Transaction B reads
updated Row X of
sample_table

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 21

https://www.triton.co.uk

Figure 7
The Lost Update
Anomaly

Time T1:
Transaction A reads
Row X of sample_table
with the intention of
updating it.
Col Y = 5

Time T3:
Transaction A updates
Col Y of Row X.
Col Y = value read + 10
= 5 + 10 = 15

Time T5:
Transaction A commits

Time T4:
Transaction B updates
Col Y of Row X.
Col Y = value read + 5
= 5 + 5 = 10

Time T6:
Transaction B commits
Col Y of Row X is now
logically corrupt

Time T2:
Transaction B reads
Row X of sample_table
with the intention of
updating it.
Col Y = 5

Lost update anomaly
The lost update anomaly is perhaps the most obvious
anomaly leading to data corruption and occurs when
two transactions both read and update the same
row, but the second transaction overwrites the first
transaction’s update:

You’ll recognise Figure 7 as the Figure 1 Logical Data
Corruption diagram from the introductory section on
data integrity, performance, and locking. It illustrates
that the lost update anomaly occurs when two
concurrent transactions access the same data without
the accessed data being protected by locks. In this case,
when transaction B commits, Col Y of Row X should have
a value of 20, not 10 (the original value of 5 incremented
by 10 and then incremented by a further 5, that is, 5 +
10 = 15, 15 + 5 = 20). Unlike the other data anomalies,
where potentially inconsistent data is returned to
the application, the lost update causes logical data
corruption in the database.14

Later in this paper we’ll see how the lost update
anomaly can occur even when the updated data
is protected by locks if the wrong programming
techniques are used.

Isolation Levels and Data Anomalies
The following table shows which transaction isolation levels are susceptible, in theory, to which data anomalies.

Note that the table specifies ‘might occur’ and not ‘does occur’ – data anomalies are not guaranteed to occur
for these isolation levels but can occur in the right (or wrong) combination of circumstances.

ANSI/ISO
Isolation

Db2
Isolation

Phantom Row Non-repeatable
Read

Dirty Read Lost Update

Serializable RR Does not occur Does not occur Does not occur Does not occur

Repeatable
Read

RS Might occur Does not occur Does not occur Does not occur

Read
Committed

CS Might occur Might occur Does not occur Does not occur

Read
Uncommitted

UR Might occur Might occur Might occur Does not occur

14 Bear in mind that returning inconsistent data to an application could result in logical data corruption if the application makes subsequent updates
to the database based on that inconsistent data.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 22

https://www.triton.co.uk

Note that by design, the RS, CS and UR isolation levels accommodate the possibility of encountering one or more of
the anomalies. This means that when you code your application, you must be aware of the potential exposure to the
associated data anomalies. If you never need to access a row more than once, then you won’t need to use isolation
RR or RS. Be wary of that word ‘access’: it includes update access as well as read access. More of that later on.

Also note that for CS and UR, the table indicates that the lost update does not occur. This is not strictly true: with
Db2 for z/OS, if you use the wrong coding techniques, then the lost update anomaly could occur. For that reason,
let’s look at data currency options and, first, some data currency issues associated with cursors.

Cursors and Data Currency
As we’ve seen, Db2 manages the various levels of transaction isolation, principally
by using different lock durations for RR and RS versus CS.
However, CS introduces a series of data currency considerations around when a lock is taken and if a lock is
taken, related to the type of cursor and the CURRENTDATA BIND option. It’s vital to emphasise that the following
discussion concerns isolation CS only – none of the issues can be encountered with isolation RS or RR.15

In this section we’ll discuss various cursor types, when locks are acquired for the read-only cursor, and the
implications for data currency of the mechanism know as lock avoidance. We’ll then go into some detail about
the data integrity implications of combining read-only cursors with searched updates, a common practice in some
environments and with some programming languages such as Java. Then, we move onto the perils of access-
dependent cursors and why you should avoid relying on them.

For-update, Read-only and Ambiguous Cursors
The cursor types relevant to this discussion do not include the set of cursors known as scrollable cursors, but rather
non-scrollable read-only cursors, ambiguous cursors, and for-update cursors – the types of cursor most commonly
used. We’ll deal with for-update cursors first.

A for-update cursor is essentially a cursor that allows data to be updated via a positioned update statement. A
positioned update statement is of the type UPDATE … WHERE CURRENT OF <cursor_name> (or DELETE … WHERE
CURRENT OF). Typically, a for-update cursor declared using static SQL requires a FOR UPDATE clause when it is
declared.16 The declaration of a for-update cursor must not include an ORDER BY clause nor any function or clause
that implies sorting or aggregation such as MAX or GROUP BY. With dynamic SQL, to use a positioned update, the
cursor declaration must always include a FOR UPDATE clause. Locking with update cursors running with CS isolation
is always the same: when a row is read, a U-lock is taken; if the row is actually updated, an X-lock is taken and is
held until commit time; if the row is not updated then the U-lock is released when the next row is read or the cursor
is closed, whichever happens first.

Next, we’ll deal with read-only cursors, but as they are the most important cursors in terms of the data currency
and integrity discussion, we’ll return to them again later. If the result set is read-only – that is, it’s not eligible for
update – then the cursor is read-only. For example: if the query contains any of ORDER BY, GROUP BY, DISTINCT,
UNION, INTERSECT or EXCEPT; if the FROM clause represents more than one table or view, or a nested table
expression; if the query uses FOR FETCH ONLY; or if the result set is materialized in a work file.

15 See, however, the discussion on RR/RS and non-materialised result sets later in this paper.
16 For a cursor declared in a static SQL statement, the “FOR UPDATE” clause is not required if the STDSQL(YES) or NOFOR options are in effect at the program

preparation stage. The default settings for the STQSQL system parameter is NO, but this can be overridden at program preparation time.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 23

https://www.triton.co.uk

We’ll come back to read-only cursors once we’ve discussed the thorny issue of ambiguous cursors. Simply put, a
cursor is ambiguous if Db2 can’t tell whether it’s used for update or for read-only purposes. The topic of ambiguous
cursors is more complicated than defining cursors without the FOR UPDATE or FOR FETCH ONLY attribute, or
implicit read-only cursors. We won’t go into all the details of ambiguous cursors here, other than to highlight why
you should avoid their use wherever possible. Firstly, in some circumstances, Db2 stops you updating rows via
an ambiguous cursor – see SQL Code -510 for more details. Secondly, whereas in some circumstances use of an
ambiguous cursor can result in Db2 lock avoidance techniques being used (discussed later), in other circumstances
it can inhibit the use of those lock avoidance techniques. Because of the difficult nature of ambiguous cursors, you
should always code FOR FETCH ONLY or FOR UPDATE on a cursor, to avoid ambiguous cursors and to document the
use of the cursor in the program code. Theoretically, you could rely on ORDER BY to implicitly define a cursor as read
only, but if you were to remove the ORDER BY when maintaining the application program, then the cursor might
move from read-only to ambiguous.

Acquiring and releasing locks for read-only cursors
Having outlined the difference between for-update, ambiguous and read-only cursors, it’s time to return to the
topic of when locks are acquired and released with read-only cursors. If the result set is not materialised in a
work file or there is no in-memory sort, then the S-locks on the pages or rows are acquired at fetch time. They
are released when the application fetches a row on another page for LOCKSIZE PAGE or fetches the next row for
LOCKSIZE ROW. So far, so good. On the other hand, if the rows are sorted or the result set is materialised in a work
file, then any necessary locks are acquired at open cursor time and will have all been released before the first fetch.
This means that when a transaction with this kind of access path gets to read each row from the materialised result
set, it holds no lock on that row which could already have been updated by another transaction.

In the case of a read only isolation CS cursor, once a row has been read and the cursor is positioned on another page
or row (depending on the lock size), there is no lock protecting that page or row and preventing other concurrent
transactions from updating that page or row, regardless of when a share lock on the page or row was acquired.

The time at which locks are taken also affects, of course, when any lock waits are incurred, either at cursor open
time or row fetch time. And following from that, if there is lock contention within the application, the time when lock
waits are incurred determines when any timeouts are experienced and, depending on the mix of SQL statements
used, can affect the probability of deadlocks.

To summarise, the exact currency of each row accessed via a read-only cursor is dependent on the access path
chosen by Db2. The row seen by the application could be the state of the row as of open cursor time or the state of
the row as of fetch time. The application cannot tell if it is seeing the latest version of the row, unless it is access-
path dependent and knows with certainty that an S-lock was acquired at fetch time.

Lock Avoidance and the CURRENTDATA Bind Option
For now, we’ll move on to discuss the ‘if’ of locking, in conjunction with some more data currency issues. As well
as the options we’ve already discussed, there is another BIND option, CURRENTDATA. The default setting for this
option has changed over Db2 releases more than once, but since at least Db2 Version 8 it has defaulted to NO.

Let’s start off with CURRENDATA(YES), which means that the data cannot change while the cursor is positioned on
it. If a cursor declared by Transaction A is positioned on a base table row or index (for index-only access), then the
data returned by the cursor is guaranteed to be current. Be aware that if the cursor moves onto the next row, then
the lock on the previous row is released and a lock on the next row is obtained. This means that another transaction
could acquire an exclusive lock on the row and update it, even while Transaction A continues to read other rows via
the cursor.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 24

https://www.ibm.com/docs/en/db2-for-zos/13?topic=codes-510
https://www.triton.co.uk

However, if the cursor is positioned on data in a work file (including rows sorted in memory), the data returned by
the cursor only matches the contents of the work file, not the row in the base table. Locks on the base table rows
are acquired at cursor open time and will have been released by the time the transaction issues the first fetch.
Therefore, by the time the transaction reads a row in the result set, the row in the base table might be unchanged or
could have been changed by another transaction, because the transaction won’t hold any locks on the base table
rows – guaranteed. A side of effect of CURRENDATA(YES) is that it disables lock avoidance, described below.

The default BIND option of CURRENTDATA(NO) means that the data can change while the cursor is positioned
on it if lock avoidance is in effect for the reader, and the update transaction can then acquire a U-lock or an
X-lock on the data. The benefit of lack avoidance is that it improves concurrency and reduces CPU consumption.
CURRENDATA(NO) enables but does not guarantee lock avoidance. That is, Db2 can avoid locking the data if it can
determine that the row or page contains committed data.17 If taking a lock can be avoided, then the data is returned
to the application without a lock being taken, and the data can be changed even while the cursor is positioned
on the row. Even if you’re not planning to update the row, this might be an issue, but you can use the techniques
outlined later in this paper to allow you to use CURRENTDATA(NO) combined with searched updates safely. If Db2
is unable to determine that the row or page contains committed data, it acquires an S-lock to make sure that no
other transaction has updated the row without committing the update. If there is an uncommitted update, then the
transaction requesting the S-lock is suspended until the other transaction’s X-lock is released at COMMIT time.

Experience shows that effective lock avoidance brings great concurrency benefits, especially in a data sharing
environment. It also plays a role in reducing CPU consumption and for update-intensive batch can help control
MLC costs. It’s important to emphasise that for performance reasons as well as concurrency, CURRENTDATA(NO)
is strongly recommended in a data sharing environment, provided the application is coded correctly and does not
depend on share locks always being obtained.

There is an important point to make here about singleton select statements – non-cursor SELECT statements that
return a single row. There is a clue as to the locking implications for singleton selects in the name of the isolation
level: cursor stability. With a singleton select, regardless of the CURRENTDATA setting, by the time the row is
returned to the application, there will not be a lock on the page or row. If a lock is required, it is obtained when
Db2 determines the row qualifies, and then released almost immediately, and before the row is returned to the
application. This is because the transaction is not positioned on the row, as position is only possible when the row is
accessed via a cursor.

Combining Read-only Cursors with Searched Updates
Before expanding the discussion about read-only cursors running with a transaction isolation level of cursor stability
(CS) to include the fairly common practice of combining read-only cursors with searched updates, it’s important
to point out that if you intend to read rows via a cursor with the intention of updating them (or deciding whether
or not to update them), then where possible you should declare the cursor with the FOR UPDATE clause and use
positioned updates: UPDATE … WHERE CURRENT OF … . This is because when you read a row via a for-update cursor,
Db2 acquires a U-lock18 which is held for as long as the cursor is positioned on the row, and only released when the
cursor is moved off the row without updating it. The U-lock allows simultaneous concurrent transactions to acquire
S-locks but not U or X-locks. If the row is updated, the U-lock is promoted to an X-lock which is retained until the
application reaches a commit point. This mechanism prevents any concurrent transactions from updating the row
(or even evaluating the row for update) when the cursor is positioned on it.

17 Lock avoidance is covered in some detail in the Redbook “Db2 9 for z/OS: Resource Serialization and Concurrency Control”, SG24-4725.
Although this book is over 10 years old, it’s still a useful source.

18 With the exception of declaring the cursor using the WITH RS/RR and USE AND KEEP EXCLUSIVE LOCKS clauses, in which case an X-lock is acquired
at fetch time.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 25

www.redbooks.ibm.com/abstracts/sg244725.html?Open
https://www.triton.co.uk

However, using an update cursor is not always possible, so some applications have to combine a read-only cursor
with a searched update (UPDATE … WHERE cola = :hostvar …). For example:

• ORDER BY is used to ensure that the rows are read by the application in a required order.

• The application coding framework’s default behaviour is to generate read-only cursor declarations combined
with searched update statements.

• The application requires maximum concurrency and minimum locking overhead.

Let’s deal with the more obvious integrity problem of using this technique with isolation CS and CURRENTDATA(NO).
Because the application cannot know whether or not there is an S-lock, it cannot know whether or not another
application is in the process of updating the data it is reading. The data integrity exposure is a sequence something
like the following, where two transactions are trying to update the same row:

The end result is an instance of the lost update anomaly, and logical data corruption.

Switching to CURRENTDATA(YES) is not guaranteed to solve the problem of the exposure to the lost update
anomaly. If the result set is sorted or materialised in the work-file database, then by the time the application reads
the row, there will be no lock on the row, and the application is still exposed to the lost update anomaly. This applies
regardless of the CURRENTDATA setting. Unless you use the correct coding techniques, then the only alternative is
the unattractive one (from an OLTP performance/concurrency point of view) of using isolation RR or RS.

But let’s assume that the result set is not sorted or materialised in a work-file or in memory, and that S-locks are
obtained when the row is read. Taking the example above, where two transactions are trying to update the same
row, having read it via a read-only cursor. When Transaction A, which already has an S-lock on Row Z, now attempts
to promote the lock to an X-lock on that row, it is suspended by Db2 because Transaction B holds an incompatible
lock on Row Z – an S-lock. Nevertheless, Transaction A retains its S-lock on Row Z, because the cursor is still
positioned on that row. When Transaction B also attempts to promote its S-lock to an X-lock on Row Z, then it
too is suspended, because transaction A holds an incompatible S-lock on it. Both transactions are now suspended
and without Db2 deadlock detection would wait for an indefinite time for the lock promotion request to succeed.
This is an example of how you can get a deadlock on a single row. On the other hand, although the application is
vulnerable to deadlocks, data integrity is guaranteed provided that the access path doesn’t change so that the
result set is materialised in a work-file.

Similar considerations apply to the singleton SELECT. As discussed in the previous article, because there is no S-lock
on the row by the time it is returned to the application, using a singleton SELECT followed by a searched update with
cursor stability isolation is vulnerable to the lost update anomaly, regardless of the CURRENTDATA setting.

Time T0 : Transaction A reads Row Z from Table T via a read-only cursor without acquiring a lock

Time T1 : Transaction B reads Row Z from Table T via a read-only cursor without acquiring a lock

Time T2 : Transaction A updates Row Z (Z0 > Z1A) and acquires an X-lock

Time T3 : Transaction B tries to update Row Z and is suspended because of an incompatible lock held
by Transaction A

Time T4 : Transaction A terminates, issuing a commit, and the X-lock is released

Time T5 : Transaction B is resumed, acquires the X-lock on Row Z and updates Row Z (Z0 > Z1B)
and overwrites Transaction A’s update.

Time T6 : Transaction B terminates, issuing a commit, and the X-lock is released

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 26

https://www.triton.co.uk

Access-Path Dependent Cursors
To continue the discussion about cursors, it might be tempting to rely on combining ISOLATION(CS) with
CURRENTDATA(YES) and an access path that avoids result set materialisation for a read-only cursor (typically with
an ORDER BY) to ensure that there is an S-lock on the row when the transaction read it, so although the transaction
might be vulnerable to lock waits, timeouts or deadlocks, data integrity is nevertheless guaranteed.

For example, consider a cursor-based SELECT in an ISOLATION(CS), CURRENTDATA(YES) package, where the access
path uses index which satisfies the predicates, provides implicit ordering for an ORDER BY clause, and ensures that
there is an S-lock on the page or row. The searched UPDATE is now safe because the S-lock prevents any other
transaction from taking an X-lock on the page or row.

However, if the access path changes for any of many different possible reasons,19 then the assumption that the
searched update is safe is now flawed. There is no guarantee that an ORDER BY will be satisfied by an index, but
there is a risk that the ORDER BY causes a sort and result set materialisation either in memory or in a work-file. If
this happens, then once again, the application is exposed to the lost update anomaly. For this reason, applications
which combine read-only cursors with searched updates of rows in the result set should not rely on access path
dependent cursors to guarantee data integrity.

This brings us back to the discussion about FOR UPDATE cursors and ordering of the result set. If the application
relies on an index to impose ordering on a FOR UPDATE cursor because the columns in the index match the
columns in the list of predicates, then that ordering is vulnerable to unwanted or unexpected access changes.
Although data integrity is guaranteed because a FOR UPDATE cursor is used to exploit Db2’S-locking semantics,
the application logic can break down if it is dependent on the order in which the rows are returned. This can happen,
for example, if an index with different ordering is selected by the Optimizer at BIND or PREPARE time, or access to
the rows reverts to a tablespace scan.

Examples of this include batch programs with intermediate commits and restart logic to resume processing after a
failure, or batch programs which reopen their cursors after a commit and reposition on the data. If the application
relies on implied ordering, then data corruption can occur if the implied ordering is not honoured because of
an access path change. The form of corruption in this example is where rows are updated multiple times, or not
updated at all.

Locking With Searched Update and Delete
We’ve discussed the locking mechanism in effect for cursors, but it’s also important to understand what locks
Db2 acquires for searched updates and deletes. The exact mechanism depends on a system parameter (ZPARM),
XLKUPDLT (X-lock for searched update and delete), which has three possible settings: NO, YES and TARGET.
Starting with the default setting, the effects are as follows:

XLKUPDLT=NO: Db2 uses an S-lock or U-lock when searching for rows that qualify. For rows or pages that qualify,
the lock is promoted to an X-lock before performing the update or delete. For non-qualifying ISOLATION(CS) rows
or pages, the lock is released. An S-lock is used for ISOLATION(RR|RS) transactions, when ZPARM RRULOCK is set to
NO. See below for more information on this ZPARM.

XLKUPDLT=YES: Db2 immediately acquires an X-lock when searching for rows that qualify. For ISOLATION(CS),
the lock is released if the rows or pages do not qualify, but for ISOLATION(RR|RS) the X-lock is retained until the
next commit. The X-lock is also used for rows or pages for additional tables that are referenced in the query but
not updated, for example tables referenced in the WHERE clause. This setting typically increases the potential for
contention, but in some cases can reduce the CPU overhead without impacting concurrency. For example, this
might be useful in a data sharing environment where a unique index is used to identify qualifying rows.

19 For example, a REBIND following a RUNSTATS, Db2 maintenance, database schema changes, the DBA dropping the index, the index being in rebuild
pending etc.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 27

https://www.triton.co.uk

XLKUPDLT=TARGET: This is similar to XLKUPDLT=YES, except that an S-lock or U-lock is acquired on rows or pages
for any additional tables referenced in the query, for example, tables referenced in the WHERE clause.

RRULOCK: as indicated above, the acquisition of S-locks instead of U-locks for a searched update or delete
is controlled by another ZPARM, RRULOCK. This specifies what lock is taken for transactions running with
ISOLATION(RR|RS) and for cursor-driven positioned updates (SELECT with FOR UPDATE OF) as well as for searched
UPDATE and DELETE. For RRULOCK=YES, Db2 acquires a U-lock. If the row is not updated, the U-lock is demoted
to an S-lock on the next fetch. Otherwise, the U-lock is promoted to an X-lock. For RRULOCK=NO, Db2 acquires
an S-lock, which will be promoted to an X-lock if the row is updated. If your RR or RS applications make frequent
updates, a U-lock reduces the potential for deadlocks. For read-only applications or a mix of read and write
applications, S-locks generally provide more concurrency and better performance (reduced CPU time). Whatever
you code for RRULOCK is over-ruled by XLKUPDLT=YES or TARGET.

Bear in mind that these ZPARMs are system wide and in general don’t affect the way you code your applications
except in the case where programming standards mandate how searched updates and deletes are coded.

Update Applications and Data Integrity
It’s time, at last, to move on to recommendations for coding update application for
data integrity – even with read-only cursors – to deliver high performance combined
with guaranteed data integrity.
This section outlines the coding techniques required to protect against data anomalies, most specifically the lost
update anomaly. One of the most important factors determining the available safe techniques is the transaction
isolation level in effect at run time.

Let’s start with a restatement of why this is important. In Db2 for z/OS, the recommended programming technique
for reading rows via a cursor and then updating some or all of those rows is to specify the FOR UPDATE clause on
the cursor declaration and use positioned updates – UPDATE WHERE CURRENT OF. This has the advantage that,
when you read a row, Db2 takes a U-lock on the row or page. This allows concurrent readers with an S-lock, but any
concurrent transactions requesting U or X-locks will have to wait until the U-lock is released. When the transaction
issues UPDATE WHERE CURRENT OF <cursor-name>, Db2 attempts to promote the U-lock to an X-lock. This
ensures that no other transaction can have updated the row between the SELECT, which protects the row with a
U-lock, and the UPDATE.

However, it’s not always possible to use FOR UPDATE cursors. A lot of Java tooling, for example, generates read-
only cursors with searched updates (UPDATE … WHERE cola = :hostvar). For all applications, regardless of the
tooling, using FOR UPDATE cursors is either not possible or safe if ordering of the result set is required. Why not
safe? In cases like this, even if an implicitly-ordering index is available, because it’s unsafe for the application to rely
on that index in case the access path changes, it’s necessary for ORDER BY to be coded on the SELECT statement
referenced by the cursor.

This introduces a topic that so far has only been hinted at, optimistic locking. Optimistic locking is based on the
assumption that concurrent transactions can run successfully without affecting each other, and that each individual
transaction doesn’t need to lock the rows being accessed. Db2 transactions running with page/row level locking,
cursor stability isolation and CURRENTDATA(NO) can exploit one of the variants of optimistic locking.20 For read-
only transactions, the question is, can they tolerate accessing data without locking it. For update transactions, an
additional consideration is that the row they are updating might have been changed since they read it.

20 Some might argue that this is not pure optimistic locking as Db2 might take a lock on a page or row. Whether or not Db2 obtains a lock depends on the
effectiveness of the lock avoidance mechanism, that is, whether or not Db2 can determine that the row/page contains committed data. And bear in mind
that Db2 will in any event take an intent lock on the tablespace/partition.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 28

https://www.ibm.com/docs/en/db2-for-zos/13?topic=statements-declare-cursor
https://www.ibm.com/docs/en/db2-for-zos/13?topic=statements-update
https://www.triton.co.uk

It is also the case that any transaction using a read-only cursor combined with searched updates, even with
CURRENTDATA(YES), must be coded as if it were using optimistic locking as it can’t know with certainty when a
lock was taken on the row they are reading: at fetch time or at open cursor time, without using an access path-
dependent cursor, which is (as already described) a high-risk technique.

For this kind of application – combining read-only cursors with searched updates – optimistic locking should be
used. This technique typically involves the use of ISOLATION(CS) and CURRENTDATA(NO), although as we’ve seen
it’s also preferable for CURRENTDATA(YES). It combines read-only cursors with searched updates, even where a
FOR UPDATE cursor is possible. It’s based on the optimistic premise that a lock is not required for the fetch but is
only needed if the transaction tries to update the row, saving the CPU cost of acquiring a lock at fetch time. For
some applications, the driving requirement behind optimistic locking is to minimise the CPU cost of locking. The
smaller the ratio of updated rows, the more favourable this technique is, as each update means the row must be
accessed twice: once for FETCH and once for UPDATE; the latter requires its own access path.21

Bear in mind that even for a transaction using optimistic locking – that is, running under an ISOLATION(CS)
CURRENTDATA(NO) package – read locks will still be required if another concurrent uncommitted transaction has
updated but not committed the row being read. Provided that the result set is not materialised at open cursor time,
then an optimistic locking transaction trying to read the row via a read-only cursor will enter a lock wait at fetch
time, when Db2 will delay obtaining an S-lock on its behalf until the concurrent update transaction has committed.
For a materialised result set, any lock waits occur at open cursor time.

Some applications adopt a different strategy by declaring the cursor using the WITH UR clause. The technique for
UPDATE (discussed below) remains the same, but the difference between the two approaches is that the UR reader
might see uncommitted updates to the row after reading the uncommitted update without acquiring a lock, and
only trying to acquire an X-lock if and when it issues an UPDATE.

Which of these two methods you choose for reading the data will depend on a number of factors, including: the
level of contention within the application as a whole (the intensity with which the transactions contend for the same
data); the percentage of rows read that are updated; the toleration for reading transactionally inconsistent data; the
importance of minimising CPU consumption; and other considerations.

To return to isolation CS transactions with CURRENTDATA NO, if Db2 can avoid taking a lock for Transaction A’s
read-only cursor, it will – this allows other concurrent transactions to subsequently take U or X-locks, potentially
even while Transaction A’s cursor is still positioned on the row. There will definitely be no lock on the row at fetch
time if the result set was materialised e.g., in a work-file. This opens up the possibility of the lost update anomaly,
which can occur if Transaction A updates the row without verifying that the row hasn’t changed since it read it. Very
similar considerations apply not only with isolation UR but also with singleton SELECTs (SELECT without a cursor). In
both cases, the transaction reading the row will not have a lock on the row when the application reads it.

The techniques for guaranteeing data integrity when using read-only cursors with searched updates are
quite simple in principle but the performance profile can vary considerably. Therefore, you should factor your
performance requirements into the criteria for selecting one of the techniques. Any application using these
techniques must handle the “row not found” condition for updates (SQL Code 100, SQLSTATE 01568), as we’ll see.

21 Why does UPDATE require its own access path? Because at BIND time (for static SQL statements) or PREPARE time (for dynamic SQL), Db2 can’t know that
the row being updated is the same one as the row on which the cursor is positioned. Indeed, it can’t even know that there is a cursor, because BIND/PREPARE
does not take into account any other statements which the program may (or may not) have executed. Just to reinforce the point, BIND does not know the
order in which SQL statements will be executed; and PREPARE can take place at any time prior to the statement being executed.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 29

https://www.ibm.com/docs/en/db2-for-zos/13?topic=statement-isolation-clause
https://www.triton.co.uk

The first technique is to select all columns from the table, and when updating a row specify all retrieved column
values as predicates on the searched UPDATE statement. If any value has changed since the row was read, the “row not
found” condition will be returned when the transaction attempts to perform the update. At least one software vendor
application uses this method. The technique is effective but could have a significant CPU cost, dependent on the table
design. There are several factors to take into account when considering whether to use this technique, including:

• Each column returned to the application and each predicate evaluated on the UPDATE increases the CPU cost.
The more columns in the table, the less attractive this solution from a performance/CPU cost perspective.
This technique suits tables with a smaller number of columns better than tables with a larger number.

• A high ratio of rows updated / rows read can make this technique more costly in CPU terms if the number
of searched UPDATE predicates is large.

• All programs using this technique must be coded accordingly. If any updateable columns are added to the
table, the programs must be modified.

One temptation might be to select all columns that are updated and to include only those columns in the predicate
list for the update along with the predicates needed to uniquely identify the row. However, that is potentially
dangerous – if the list of updated columns changes, then existing update applications are potentially susceptible
to the lost update anomaly because the list of predicates excludes rows that might have been updated. As well as
applications that issue update statements, applications that use read-only cursors and searched deletes must be
coded to deal with the ‘not found’ condition. If you’re planning to use this technique, it’s better to err on the side of
caution than risk compromising data integrity by including all columns in the list of predicates.

There is one further drawback to this approach. If new columns are added to the table, then all application programs
that update the table must be updated to include the extra columns in the select and in the list of predicates in the
WHERE clause of the UPDATE statement.

The second technique is to add one or more columns that indicate whether the row has been updated. A typical
technique is to add a timestamp column which is updated with the current timestamp by every UPDATE or INSERT
statement. Other column types are possible, but in this discussion let’s assume that the added column is a
timestamp column. All searched UPDATE statements must include the timestamp column in the list of predicates,
which means that if any value has changed since the row was read, the “row not found” condition will be returned
when the transaction attempts to perform the update. Factors to consider for this technique include:

• All programs updating rows in the affected tables must update the timestamp column regardless
of whether they use searched updates or positioned updates.

• All programs reading rows via a read-only cursor with the possible intent of updating them must include
the timestamp column in the list of columns returned and must include it in the predicate list.

The third technique is to use a feature introduced in Db2 9 for z/OS, the ROW CHANGE TIMESTAMP column. Db2
automatically maintains the contents of ROW CHANGE TIMESTAMP columns so there is no need for the application
to update them. To be more precise, Db2 generates a value for the column for each row as it is inserted, and
whenever it is updated. Factors to consider for this technique include:

• Programs don’t need to maintain the ROW CHANGE TIMESTAMP column.

• However, all programs reading rows via a read-only cursor with the possible intent of updating them
must retrieve the ROWCHANGE TIMESTAMP COLUMN value as well as the list of columns they are
interested in and must include it in the predicate list when performing the UPDATE.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 30

https://www.triton.co.uk

For example, if a column is added to a table defined with the column RCT_COL NOT NULL GENERATED ALWAYS
FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP, the list of columns selected should include RCT_COL:

The UPDATE statement must then include RCT_COL in the list of predicates:

Remember, you cannot update the ROW CHANGE TIMESTAMP column yourself: that column is maintained by Db2.

An alternative to retrieving the ROW CHANGE TIMESTAMP column itself is to use the ROW CHANGE TIMESTAMP
or ROW CHANGE TOKEN function instead.

The syntax for dealing with row change timestamp columns looks a little strange at first, but all you need to
remember that it is, in fact, just an expression in the column list. I’ve simplified the statements below, starting off
with the SELECT, where the row change timestamp value is selected into host variable :rcthvar . In this example,
only one column, Col2, is shown being updated

And the UPDATE statement is very similar:

You might be tempted to improve the performance of the UPDATE by selecting the value of a ROWID column or
using the ROWID or RID functions. For example, having retrieved the ROWID for a row into a host variable in the
SELECT, you can use direct row access for the UPDATE:

However, this can be a risky strategy as both the RID and ROWID for a given row can change if a REORG SHRLEVEL
CHANGE utility runs concurrently with the application, more particularly if the application program uses
intermediate commits, and FETCH and UPDATE occur in different commit scopes.

SELECT Col1, Col2, ... , RCT_COL FROM Table1 WHERE Col1 = :hvar1 ...
AND ... ORDER BY ...

SELECT Col1, Col2, ... , ROW CHANGE TIMESTAMP FOR Table1 FROM Table1
WHERE Col1 = :hvar1 ... AND ... ORDER BY ...

UPDATE Table1 SET Col2 = :hvar2, ... , WHERE Col1 = :hvar1 AND ... AND
ROW CHANGE TIMESTAMP FOR Table1 = :rcthvar

SELECT Col1, Col2, ... , ROWID_Col, ROW CHANGE TIMESTAMP FOR Table1
FROM Table1 WHERE Col1 = :hvar1 ... AND ... ORDER BY ...

UPDATE Table1 SET Col2 = :hvar2, ... , WHERE ROWID_Col =
ROWID(:rowidhvar1) AND ROW CHANGE TIMESTAMP FOR Table1 = :rcthvar

UPDATE Table1 SET Col2 = :hvar2, ... , WHERE Col1 = :hvar1 AND ... AND
RCT_COL = :rcthvar

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 31

https://www.ibm.com/docs/en/db2-for-zos/12?topic=aditfap-specifying-direct-row-access-by-using-row-ids
https://www.triton.co.uk

As is usual with Db2, the full story is more complicated than first appears. The reason you need to be careful is that
the values for these functions can be changed by a REORG, and you should count on this being the case. However, if
you select a ROWID or RID value for a given row and then re-use it for direct row access in the same commit scope,
then the use of these functions is safe. This is because the earliest time your application will see the data in its
reorganised state is after the commit, that is, after REORG has completed the SWITCH phase.

There is more to row change timestamp columns than can be covered here. There is some good information
in the archived IBM Redbook, Db2 9 for z/OS Technical Overview. If you don’t already have a copy, it’s strongly
recommended that you download one. It’s also strongly recommended that when you use row change timestamp
columns, you specify them as NOT NULL GENERATED ALWAYS FOR EACH ROW ON UPDATE AS ROW CHANGE
TIMESTAMP, as NOT NULL GENERATED BY DEFAULT FOR EACH ROW ON UPDATE AS ROW CHANGE TIMESTAMP
allows the application to provide a value for the row change timestamp column.

The most important point with optimistic locking strategies is that they all require a programming standard to
be defined, documented, and enforced. That standard must include one – and only one – of the techniques for
combining updates with optimistic locking and a strategy for handling ‘row not found’ on the UPDATE. One badly
written application program that doesn’t follow the standard can undo all the good work of the applications that do
comply to the standard, and to make matters worse these kinds of logical data inconsistencies can be very difficult
to detect and correct. In some cases, it can take weeks or months for the data inconsistencies to become apparent.
Recovering from logical data corruption is too big a topic to be covered in this paper.

A Sidenote on Optimistic Concurrency Control
You might see the terms “optimistic locking” and “optimistic concurrency control” used interchangeably. This is
inaccurate, as optimistic concurrency control is a feature introduced in Db2 9 for z/OS that depends on two things:
firstly, the existence of a row change timestamp on the table being queried; secondly, the use of an updateable
static scrollable cursor. If both conditions are satisfied, Db2’S-locking behaviour with ISOLATION(CS) changes. If a
lock is obtained on a row at fetch time, it is obtained immediately before the fetch and then released immediately.
A new lock is then taken on a row only for a positioned update or delete, and Db2 re-evaluates the predicate to
ensure that the row has not changed since the fetch operation. The use of scrollable cursors, static or dynamic, is
not considered in this paper.

If you need more information, you can read about optimistic concurrency control in the archived IBM Redbook
DB2 9 for z/OS Technical Overview and in the Db2 documentation.

Additional Considerations
There are several additional topics that arise out of the previous discussions, and while
not central to the key messages of this paper, they still address some useful issues.

Row level locking
The first item under discussion is row-level locking. As mentioned previously, the default lock size should be page-
level, with row-level locking only being used where justified. This is to reduce the CPU and elapsed time overhead
typically required with row-level locking, but more importantly to avoid the data sharing overhead involved. The
Db2 for z/OS documentation has further information about locking in a data sharing environment, but for the
purposes of this paper it’s important to stress that row level locking in a data sharing environment can and typically
does introduce significant overheads except in some particular cases, such as high-volume concurrent insert
processing.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 32

https://www.redbooks.ibm.com/redbooks/pdfs/sg247330.pdf
https://www.redbooks.ibm.com/abstracts/sg247330.html
https://www.ibm.com/docs/en/db2-for-zos/13?topic=option-isolation-cs
https://www.ibm.com/docs/en/db2-for-zos/13?topic=environments-concurrency-locks-in-data-sharing
https://www.triton.co.uk

Row-level locking is only required for update applications, but even so many applications don’t obtain much
benefit if any from using row-level locking instead of page-level. That’s for several reasons. For example, in OLTP
environment characterised by random access, the rows being retrieved or updated by concurrent transactions
might be rarely found on the same data page as each other. Or consider a batch program reading and updating data
sequentially: if there is little or no contention with other batch jobs or online transactions, then row-level locking
performance will be worse because more locks will be acquired, with a higher CPU cost and longer elapsed times.

However, there are some cases which mandate row-level locking. Amongst the sort of applications in this
category are:

• Where rows being updated by concurrent transactions are likely to be located on the same page, resulting in
unacceptable locking contention. This applies where the rows themselves are not subject to contention.

• For tables which are subject to high-volume concurrent inserts and which are defined with APPEND and
MEMBER CLUSTER, to prevent exponential growth in the size of the table combined with inefficient space use.

Materialised result sets
To return to materialised result sets, another consideration for applications reading but not updating rows via a
read-only cursor on a materialised result set is the fact that the application doesn’t know which version of the row
it’s reading: for example, a ‘hot’ row that is frequently updated by other transactions could be updated one or more
times since the result set was materialised, depending on the latency between result set materialisation and the
row fetch operation. In effect, the application doesn’t know if the row data values are current or have been updated
since the result set was materialised. An application reading and then updating the row using safe optimistic locking
techniques is protected, but this is a more difficult problem for the read-only application where data currency is
important. In an OLTP environment, the number of affected applications is probably quite small, but in some cases,
this could be an important consideration. Having cautioned against access-path dependent cursors, one way to
protect against this is to make sure there is at least one index that satisfies the predicates used. As always, the need
for the index must be balanced against the cost of index maintenance.

One other consideration is that if a materialised result set is very large, and therefore takes a long time to
materialise, some of the data rows can be changed by other concurrent transactions during the materialisation
process. The only way to control this is to run with LOCKSIZE TABLE or TABLESPACE, which will cause contention in
an OLTP environment.

There is no ‘silver bullet’ solution to this problem. Resolving this requires understanding the data currency
requirements of the application and choosing the best mitigation against unwanted side effects.

RR/RS and non-materialised result sets
There are some considerations for RR/RS applications and non-materialised result sets. If the result set is
materialised, then the application knows all the data row values were current as of cursor open time; the data row
values will therefore not change while the application is running because the share locks acquired at cursor open
time will be retained until the next commit. However, for a non-materialised result set which takes a long time to
consume, it is quite possible that rows are updated between cursor open time and row fetch time, when the rows
are evaluated, and the locks are acquired. Again, this probably affects a small number of applications.

It’s quite possible that there is no effective solution to a problem like this, and the best that can be done is to
understand the risks and decide whether those risks are acceptable or not. However, it’s unlikely that RR/RS
would be used in an OLTP environment because they inhibit concurrency.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 33

https://www.ibm.com/docs/en/db2-for-zos/13?topic=contention-member-affinity-clustering
https://www.triton.co.uk

Lock avoidance
We’ve discussed lock avoidance in several previous sections, without going into any detail about the lock avoidance
mechanism or the impact it can have on performance, especially in data sharing. Here I want to provide just enough
information to help application developers understand the role they play in ensuring effective lock avoidance.
Lock avoidance is a technique used by Db2 to avoid taking locks for read-only requests where possible. This does
not imply an uncommitted or dirty read, but it does mean that Db2 will avoid taking a lock for a read-only request
if it can guarantee that the pages where the target rows are located are logically and physically consistent. This is
important for two reasons: it can improve concurrency and reduce contention by avoiding unnecessary S-locks
which can delay updaters; and it avoids the CPU overhead of lock acquisition and release, and more importantly,
of contention management, especially in a data sharing environment.

The discussion in this article is limited to just one part of the lock avoidance mechanism, known as the commit log
sequence number or CLSN. Db2 tracks the time of the latest update to each page in a partition (including all UTS
partitions) or tablespace (for segmented and simple tablespaces). In a non-data sharing environment, it also tracks
the start time of the oldest uncommitted unit of work that has updated the partition or tablespace. This is the page-
set CLSN (where page-set means the tablespace or partition). When these two values are compared, if the time of
the update to the data page is earlier than the page-set CLSN, then Db2 knows all the data on the page has been
committed and can therefore employ lock avoidance.22 Otherwise, Db2 is unable to use lock avoidance for rows
on this page.

The CLSN checking part of the lock avoidance mechanism operates differently in a data sharing environment, but
the behaviour changes somewhat in Db2 12. To start off with the behaviour prior to Db2 12, when a partition or
tablespace is group buffer pool-dependent (at least two members accessing the object, with at least one of these
updating the object), then Db2 uses a global commit log sequence number (global CLSN) value, which is in fact the
earliest start time of all uncommitted URs, across all members, across all page sets. This means that a single long-
running UR can make lock avoidance less effective for all applications running in a data sharing group: the earlier
the global CLSN value, the more likely it is that the most recent update to a page is later than the global CLSN,
meaning that lock avoidance is less likely to be successful, even with the additional checking Db2 does.

Db2 12 made a big step forward in reducing the impact of long-running URs, with each member of the data
sharing group maintaining a list of approximately the 500 oldest partition/tablespace CLSN values. When Db2
12 performs CLSN lock avoidance checking this list is checked first. If the partition being accessed is in the list,
Db2 uses the associated CLSN. Otherwise, the highest CLSN value in the list is used as the global CLSN value for
lock avoidance checking.

Nevertheless, the lesson from this, even in Db2 12, is to keep the CLSN values as recent as possible, to maximise
the opportunity for lock avoidance and to minimise contention. It’s hard to overestimate how important this is, as
locking is an expensive business, especially in data sharing. There are two best practices to follow to maximise lock
avoidance:

• Commit as frequently as practical, to avoid long-running URs pushing the CLSN value far into the past.

• Defer any updates to as late as possible in the transaction, to keep the CLSN value for each affected tablespace
or partition as recent as possible. This is because the CLSN value associated with a UR is determined by the time
of the first update statement, not the start of the transaction. In any event, this is a best practice for minimising
contention by holding onto X-locks for as short a time as possible.

22 In fact, Db2 doesn’t give up on lock avoidance if the latest update on the page is more recent than the start time of the oldest UOR against the partition
– it uses additional techniques to check whether or not the row being accessed consists of committed data.

Triton Consulting triton.co.uk

Db2 for z/OS-locking for Application Developers 34

https://www.triton.co.uk

Gareth Copplestone-Jones
Infrastructure Services Director
+ 44 (0) 7734 325293
gareth.copplestone-jones@
triton.co.uk

Rob Gould
Business Development Lead
+44 (0) 7766 838 904
rob.gould@triton.co.uk

Talk to our expert team about how to
combine your application programming
techniques with your Db2 for z/OS locking
strategy to ensure data integrity.

triton.co.uk

Db2 has one further technique to use when checking to see if can exploit lock avoidance, the ‘possibly uncommitted’
(PUNC) bit in the prefix of each row as stored in the data page. This bit is inaccessible to the application and is only for
Db2 internal use. In summary, if a row is being evaluated and the page fails the page-set CLSN test, then Db2 tests
that row’s PUNC bit. If it is off, then the row is committed and Db2 can avoid taking the lock. Db2 periodically resets
these PUNC bits (if on). This is done asynchronously to any units of recovery, which is why the bit is called the ‘possibly
uncommitted’ bit – it can remain on even after the row has been committed, until Db2 resets it. However, there is
nothing the application developer can do to influence PUNC bit setting, testing, or unsetting.

Conclusion
That wraps up this paper on Db2 locking for application developers.
Once the mechanics of Db2 locking have been grasped, together with the issues around data currency, then you
should be in a good position to code your applications outlined in the later sections of the paper, thus avoiding
loss of data integrity. If you have any questions, please submit them via the document download page at
https://www.triton.co.uk/db2-for-z-os-locking-for-application-developers

Db2 for z/OS-locking for Application Developers 35

mailto:gareth.copplestone-jones%40triton.co.uk?subject=Db2%20Locking
mailto:gareth.copplestone-jones%40triton.co.uk?subject=Db2%20Locking
mailto:rob.gould%40triton.co.uk?subject=Db2%20Locking
http://www.triton.co.uk
https://www.triton.co.uk
https://www.triton.co.uk/db2-for-z-os-locking-for-application-developers

	p3
	p4
	p18
	p5
	p7
	p10
	p14
	p16
	p17
	p20
	p21
	p22
	p23
	p24
	p25
	p27
	p28
	p32
	p33
	p34
	p35

	p3:
	p4:
	p5:
	p16:
	p23:
	p28:
	p35:
	p18:
	p7:
	p10:
	p20:
	p25:
	p34:
	p32:
	p33:
	p27:
	p24:
	p21:
	p22:
	p14:

